当前位置:首页 » 生产成本 » 平均成本函数单调性怎么判断
扩展阅读
石油和黄金有什么区别 2025-05-14 19:48:31

平均成本函数单调性怎么判断

发布时间: 2022-10-10 17:25:55

1. 函数单调性的判断方法有哪些

函数单调性的判断方法有导数法、定义法、性质法和复合函数同增异减法。
1、导数法
首先对函数进行求导,令导函数等于零,得X值,判断X与导函数的关系,当导函数大于零时是增函数,小于零是减函数。
2、定义法

设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
3、性质法
若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:
⑴ f(x)与f(x)+C(C为常数)具有相同的单调性;
⑵ f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑶当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑷当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
4、复合函数同增异减法
对于复合函数y=f [g(x)]满足“同增异减”法(应注意内层函数的值域),可令 t=g(x),则三个函数 y=f(t)、t=g(x)、y=f [g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数。
拓展资料:
1、奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
2、互为反函数的两个函数有相同的单调性;
3、如果f(x)在区间D上是增(减)函数,那么f(x)在D的任一子区间上也是增(减)函数.

2. 函数单调性的判断方法有哪些

判断函数单调性的常见方法
一、 函数单调性的定义:
一般的,设函数y=f(X)的定义域为A,I↔A,如对于区间内任意两个值X1、X2,
1)、当X1<X2时,都有f(X1)<f(X2),那么就说y=f(x)在区间I上是单调增函数,I称为函数的单调增区间;
2)、当X1>X2时,都有f(X1)>f(X2),那么就说y=f(x)在区间I上是单调减函数,I称为函数的单调减区间。
二、 常见方法: Ⅰ、定义法:
定义域判断函数单调性的步骤 ① 取值:
在函数定义域的某一子区间I内任取两个不等变量X1、X2,可设X1<X2; ② 作差(或商)变形:
作差f(X1)-f(X2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形; ③ 定号:
确定差f(X1)-f(X2)的符号; ④ 判断:
根据定义得出结论。
例:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明
解:任取x1、x2↔(-∞,+∞),x1<x2,则
f﹙x1﹚-f﹙x2﹚=(x13+x1)- (x23+x2)=(x1-x2)+(x13-x23)
=(x1-x2)(x12+x22+x1x2+1)
=(x1-x2) [﹙x1+1/2x2﹚2+1+3/4x22]
∵x1、x2↔(-∞,+∞),x1<x2, ∴x1-x22x2﹚2+1+3/4x22>0 故f(x1)-f(x2)<0,即f(x1)<f(x2) ∴f(x)在(-∞,+∞)上单调递增
Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出): ① 函数y=-f(x)的单调性相反
② 函数y=f(x)恒为正或恒为负时,函数y=f(x)的单调性相反 ③ 在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数 例:判断函数y=-x+1+1/x在(0,+∞)内的单调性 解:设y1=-x+1,y2=1/x,
∵y1在(0,+∞)上↓,y2在(0,+∞)上↓, ∴y=-x+1+1/x在(0,+∞)内↓
Ⅲ、图像法:
说明:⑴单调区间是定义域的子集 ⑵定义x1、x2的任意性
请采纳一下

3. 判断单调性的5种方法

判断单调性的5种方法:定义法、导数法、图象法、化归常见函数法、运用复合函数单调性规律法。函数的单调性是函数在一个单调区间上的“整体”性质,具有任意性,不能用特殊值代替。
复合函数单调性规律:
1、若函数f(x),g(x)在区间D上均为增(减)函数,则函数f(x)+g(x)在区间D上仍为增(减)函数。
2、若函数f(x)在区间D上为增(减)函数,则函数-f(x)在区间D上为减(增)函数。
3、复合函数f[g(x)]的单调性的判断分两步:Ⅰ考虑函数f[g(x)]的定义域,Ⅱ利用内层函数t=g(x)和外层函数y=f(t)确定函数f[g(x)]的单调性,法则是“同增异减”,即内外函数单调性相同时为增函数,内外层函数单调性相反时为减函数。

4. 如何判断一个函数的的单调性

1、定义法

定义法:按照证明函数单调性的五个步骤(1取值,2作差,3变形,4判号,5定论)进行判断。

定义如下:函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。

当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少) 。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。

2、当a>0时,函数af(x)与f(x)有相同的单调性; 当a<0时,函数af(x)与f(x)有相反的单调性;

3、当函数f(x)恒为正(或恒为负)时,f(x)与1/f(x)有相反的单调性;

4、若f(x)非负,则f(x)与f(x)的算术平方根具有相同的单调性;

5、若f(x)与g(x)的单调性相同,则f(x)+g(x)的单调性与f(x)、g(x)的单调性相同;

6、若f(x)与g(x)的单调性相反,则f(x)-g(x)的单调性与f(x)的单调性相同。

”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。

5. 函数单调性的判断方法有哪些

⑴利用增(减)函数的定义进行判断;
⑵利用导数进行判断
⑶利用图象进行判断;
⑷利用简单初等函数的单调性结论直接进行判断(含一次函数,二次函数,指数函数,对数函数,幂函数,三角函数)
⑸利用一些重要结论进行判断:
①若f(x)在区间D上是增(或减)函数,则它在D
的任意子区间上也是增(减)函数;
②f(x)+C与f(x)具有相同的单调性(C为常数);
③当C>0(或C<0)时,Cf(x)与f(x)具有相同(或相反)的单调性(C为常数);
④若f(x)与g(x)的单调性相同,则f(x)+g(x)也有相同的单调性;若f(x)与g(x) 的单调性相反,则f(x)-g(x)与f(x)的单调性相同,与g(x)的单调性相反。
⑤由两个函数组成的复合函数的单调性的判断规律为“同增异减”;
⑥奇函数在关于原点对称的区间上的单调性完全相同,而偶函数则在关于原点对称的区间上的单调性正好相反。
希望能够帮到你!

6. 判断一个函数单调性的方法

1单调性的定义法
2函数的图像法
3特殊值法
4导函数法,这个最常用。

7. 如何辨别函数是否有单调性

函数单调性的定义是:如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这个区间具有严格的单调性。
注意:函数的单调性也叫函数的增减性
判断的步骤:
a.设x1,x2属于给定区间,且x1
0,则为为减函数)
单调性是对于某一个区间而言的,y=x平方+1在坐标轴左面是递减,在右侧是递增的。它不具有严格意义上的递增或减
你要注意一个问题,单调性是对定义域中的某一个区间而言的,它是一个局部性概念,某些函数在其定义域中某些区间是递增的,而某些区间是递减的
你判断给出的函数在其定义域内是否有单调性,就看这个函数在整个定义域内或者是给定的定义域内的某个区间是否单调,说白了就是不能有增又有减
能不能看明白?
你把函数图像画出来就能看出来了
y=x平方+1,这是一个二次函数,它的图像是关于y轴对称的,在(0,负无穷)函数是递减的,(0,正无穷)是递增的。是在这两个区间内分别是具有点调性。而是整个定义域(负,正无穷)就不能说单调了。

8. 函数单调性的判定方法有哪三种

1. 定义法

根据函数单调性的定义,在这里只阐述用定义证明的几个步骤:

①在区间D上,任取

拓展资料

函数的单调性(monotonicity)也叫函数的增减性,可以定性描述在一个指定区间内,函数值变化与自变量变化的关系。当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值也随着增大(或减小),则称该函数为在该区间上具有单调性(单调增加或单调减少。在集合论中,在有序集合之间的函数,如果它们保持给定的次序,是具有单调性的。

网络单调性

9. 函数的单调性和奇偶性分别怎么判断

函数的单调性和奇偶性判断方法如下。

函数单调性的判断方法有定义法、性质法和复合函数同增异减法、导数法。

奇偶性的话一般是画图进行判断,其他方法就是利用定义和函数运算。

单调性是指当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。

奇偶性是函数的基本性质之一。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。

一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。

10. 如何判断一个函数的的单调性

第一
看函数图像
第二
用定义方法证明
即设X1<X2,且X1
X2在定义域内
然后将F(X1)
F(X2)相减或相初
比较结果与零的大小
或结果与1的大小
即F(X1)<F(X2)为增
反之为减
第三
对原函数求导
看F’(X)是恒正还是恒负
恒正为增
恒负为减