Ⅰ 3大常用的數據分析工具是什麼
3大常用的數據分析工具如下:1、思邁特軟體Smartbi
思邁特軟體Smartbi是專業的BI工具,基於統一架構實現數據採集、查詢、報表、自助分析、多維分析、移動分析、儀表盤、數據挖掘以及其他輔助功能,並且具有分析報告、結合AI進行語音分析等特色功能。十多年的發展歷史,國產BI軟體中最全面和成熟穩定的產品。廣泛應用於金融、政府、電信、企事業單位等領域。完善的在線文檔和教學視頻,操作簡便易上手。
2、MineSet
MineSet是由SGI公司和美國Standford大學聯合開發的多任務數據挖掘系統。MineSet集成多種數據挖掘演算法和可視化工具,幫助用戶直觀地、實時地發掘、理解大量數據背後的知識。
3、QUEST
QUEST是IBM公司Almaden研究中心開發的一個多任務數據挖掘系統,他的目的是為新一代決策支持系統的應用開發提供高效的數據開采基本構件。
數據分析工具靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。
Ⅱ 機器學習系統和大數據挖掘工具有哪些
1、KNIME
KNIME可以完成常規的數據分析,進行數據挖掘,常見的數據挖掘演算法,如回歸、分類、聚類等等都有。而且它引入很多大數據組件,如Hive,Spark等等。它還通過模塊化的數據流水線概念,集成了機器學習和數據挖掘的各種組件,能夠幫助商業智能和財務數據分析。
2、Rapid Miner
Rapid Miner,也叫YALE,以Java編程語言編寫,通過基於模板的框架提供高級分析,是用於機器學習和數據挖掘實驗的環境,用於研究和實踐數據挖掘。使用它,實驗可以由大量的可任意嵌套的操作符組成,而且用戶無需編寫代碼,它已經有許多模板和其他工具,幫助輕松地分析數據。
3、SAS Data Mining
SAS Data Mining是一個商業軟體,它為描述性和預測性建模提供了更好的理解數據的方法。SAS Data Mining有易於使用的GUI,有自動化的數據處理工具。此外,它還包括可升級處理、自動化、強化演算法、建模、數據可視化和勘探等先進工具。
4、IBM SPSS Modeler
IBM SPSS Modeler適合處理文本分析等大型項目,它的可視化界面做得很好。它允許在不編程的情況下生成各種數據挖掘演算法,而且可以用於異常檢測、CARMA、Cox回歸以及使用多層感知器進行反向傳播學習的基本神經網路。
5、Orange
Orange是一個基於組件的數據挖掘和機器學習軟體套件,它以Python編寫。它的數據挖掘可以通過可視化編程或Python腳本進行,它還包含了數據分析、不同的可視化、從散點圖、條形圖、樹、到樹圖、網路和熱圖的特徵。
6、Rattle
Rattle是一個在統計語言R編寫的開源數據挖掘工具包,是免費的。它提供數據的統計和可視化匯總,將數據轉換為便於建模的表單,從數據中構建無監督模型和監督模型,以圖形方式呈現模型性能,並對新數據集進行評分。它支持的操作系統有GNU / Linux,Macintosh OS X和MS / Windows。
7、Python
Python是一個免費且開放源代碼的語言,它的學習曲線很短,便於開發者學習和使用,往往很快就能開始構建數據集,並在幾分鍾內完成極其復雜的親和力分析。只要熟悉變數、數據類型、函數、條件和循環等基本編程概念,就能輕松使用Python做業務用例數據可視化。
8、Oracle Data Mining
Oracle數據挖掘功能讓用戶能構建模型來發現客戶行為目標客戶和開發概要文件,它讓數據分析師、業務分析師和數據科學家能夠使用便捷的拖放解決方案處理資料庫內的數據, 它還可以為整個企業的自動化、調度和部署創建SQL和PL / SQL腳本。
9、Kaggle
Kaggle是全球最大的數據科學社區,裡面有來自世界各地的統計人員和數據挖掘者競相製作最好的模型,相當於是數據科學競賽的平台,基本上很多問題在其中都可以找到,感興趣的朋友可以去看看。
10、Framed Data
最後介紹的Framed Data是一個完全管理的解決方案,它在雲中訓練、優化和存儲產品的電離模型,並通過API提供預測,消除基礎架構開銷。也就是說,框架數據從企業獲取數據,並將其轉化為可行的見解和決策,這樣使得用戶很省心。
Ⅲ python數據挖掘工具有哪些
1. Numpy
可以供給數組支撐,進行矢量運算,而且高效地處理函數,線性代數處理等。供給真實的數組,比起python內置列表來說, Numpy速度更快。一起,Scipy、Matplotlib、Pandas等庫都是源於 Numpy。由於 Numpy內置函數處理數據速度與C語言同一等級,建議使用時盡量用內置函數。
2.Scipy
根據Numpy,可以供給了真實的矩陣支撐,以及大量根據矩陣的數值計算模塊,包含:插值運算,線性代數、圖畫信號,快速傅里葉變換、優化處理、常微分方程求解等。
3. Pandas
源於NumPy,供給強壯的數據讀寫功用,支撐相似SQL的增刪改查,數據處理函數十分豐富,而且支撐時間序列剖析功用,靈敏地對數據進行剖析與探索,是python數據發掘,必不可少的東西。
Pandas根本數據結構是Series和DataFrame。Series是序列,相似一維數組,DataFrame相當於一張二維表格,相似二維數組,DataFrame的每一列都是一個Series。
4.Matplotlib
數據可視化最常用,也是醉好用的東西之一,python中聞名的繪圖庫,首要用於2維作圖,只需簡單幾行代碼可以生成各式的圖表,例如直方圖,條形圖,散點圖等,也可以進行簡單的3維繪圖。
5.Scikit-Learn
Scikit-Learn源於NumPy、Scipy和Matplotlib,是一 款功用強壯的機器學習python庫,可以供給完整的學習東西箱(數據處理,回歸,分類,聚類,猜測,模型剖析等),使用起來簡單。缺乏是沒有供給神經網路,以及深度學習等模型。
6.Keras
根據Theano的一款深度學習python庫,不僅可以用來建立普通神經網路,還能建各種深度學習模型,例如:自編碼器、循環神經網路、遞歸神經網路、卷積神經網路等,重要的是,運轉速度幾塊,對建立各種神經網路模型的過程進行簡化,可以答應普通用戶,輕松地建立幾百個輸入節點的深層神經網路,定製程度也十分高。
關於 python數據挖掘工具有哪些,環球青藤小編就和大家分享到這里了,學習是沒有盡頭的,學習一項技能更是受益終身,因此,只要肯努力學,什麼時候開始都不晚。如若你還想繼續了解關於python編程的素材及學習方法等內容,可以點擊本站其他文章學習。
Ⅳ 數據挖掘工具有哪些
數據挖掘工具有很多,但我覺得思邁特軟體Smartbi Mining數據挖掘平台好用,它通過深度數據建模,為企業提供預測能力支持文本分析、五大類演算法和數據預處理,並為用戶提供一站式的流程式建模、拖拽式操作和可視化配置體驗。思邁特軟體Smartbi Mining數據挖掘平台支持多種高效實用的機器學習演算法,包含了分類、回歸、聚類、預測、關聯,5大類機器學習的成熟演算法。其中包含了多種可訓練的模型:邏輯回歸、決策樹、隨 機森林、樸素貝葉斯、支持向量機、線性回歸、K均值、DBSCAN、高斯混合模型。
除提供主要演算法和建模功能外,思邁特軟體Smartbi Mining數據挖掘平台還提供了必不可少的數據預處理功能,包括字 段拆分、行過濾與映射、列選擇、隨機采樣、過濾空值、合並列、合並行、JOIN、行選擇、去除重復值、排序、增加序列號、增加計算欄位等。
內置5大類機器學習成熟演算法,支持文本分析處理,支持使用Python擴展挖掘演算法, 支持使用SQL擴展數據處理能力。思邁特軟體Smartbi Mining易學易用,一站式完成數據處理和建模,你值得一試。
數據挖掘工具靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。
思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台
Ⅳ 國內有哪些比較好的數據挖掘工具呢
國內比較好的數據挖掘工具有很多,比如思邁特軟體Smartbi。思邁特軟體Smartbi是中國自助型BI領導者,它簡單易用,人人可用。可以解放IT部門,讓業務人員自主、靈活、多樣的可視化分析,無需任何技術,數秒實現數據可視化。藉助思邁特軟體Smartbi,企業可以充分發掘數據價值,告別數據孤島。思邁特軟體Smartbi性能優異,億級數據,秒級響應,實施周期以星期計算,支持PC、移動端、大屏多種終端。
思邁特軟體Smartbi大數據分析工具的特點:
1.靈動的可視分析,零編碼、可視化數據分析,即時分享數據見解。幾分鍾生成分析結果,數秒內發現知識的真知灼見。而且用戶在接收到他人分享的數據後,享有與原作者一樣的分析功能,大大提升了知識轉移和數據分析的效率。
2.提供切換自如的多屏體驗,他擁有移動端、普通電腦端、大屏顯示等多種終端展示解決方案,讓用戶隨時隨地對關心的數據了如指掌。
思邁特軟體Smartbi通過深度數據建模,為企業提供預測能力支持文本分析、五大類演算法和數據預處理,並為用戶提供一站式的流程式建模、拖拽式操作和可視化配置體驗。思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。
思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台
Ⅵ 目前都有哪些數據分析的工具
大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash
Ⅶ 有哪些python數據挖掘工具
1、Numpy:可以供給數組支撐,進行矢量運算,而且高效地處理函數,線性代數處理等。供給真實的數組,比起Python內置列表來說,numpy速度更快。Scipy、Matplottlib、pandas等庫都是基於numpy的。由於Numpy內置函數處理數據速度與C語言同一等級,建議使用時盡量用內置函數。
2、Scipy:可以供給真實的矩陣支撐,以及大量根據矩陣的數值計算模塊,包含:插值運算、線性代數、圖畫信號等。
3、Pandas:源於Numpy,供給強壯的數據讀寫功用,支撐相似sql的增刪改查,數據處理函數十分豐富,而且支撐時間序列剖析功用,靈敏地對數據進行剖析與探索,是Python數據挖掘必不可少的東西。
4、Matplotlib:數據可視化最常用,也是最好用的東西之一,Python中聞名的繪圖庫,首要用於2維作圖,只需要簡單幾行代碼就可以生成各式的圖標,比如直方圖、條形圖、散點圖等,也可以進行簡單的3維繪圖。
5、SciKit-Learn:源於Numpy、Scipy和Matplotlib,是一款功用強壯的機器學習Python庫,可以供給完整的學習東西箱,使用起來簡單。
Ⅷ 常用數據挖掘工具有哪些
前段時間國際權威市場分析機構IDC發布了《中國人工智慧軟體及應用(2019下半年)跟蹤》報告。在報告中,美林數據以11%的市場份額位居中國機器學習開發平台市場榜眼,持續領跑機器學習平台市場。在此之前,2019年IDC發布的《IDC MarketScape™:中國機器學習開發平台市場評估》中,美林數據就和BAT、微軟、AWS等知名一線廠商共同躋身領導者象限,成為中國機器學習開發平台市場中的領導企業之一。
以上都是對美林數據Tempo人工智慧平台(簡稱:TempoAI)在機器學習開發平台領域領先地位的認可,更說明美林數據在堅持自主創新、深耕行業應用道路上的持續努力,得到了業界的廣泛認可,並取得了優異成績。
點此了解詳情
Tempo人工智慧平台(TempoAI)為企業的各層級角色提供了自助式、一體化、智能化的分析模型構建能力。滿足用戶數據分析過程中從數據接入、數據處理、分析建模、模型評估、部署應用到管理監控等全流程的功能訴求;以圖形化、拖拽式的建模體驗,讓用戶無需編寫代碼,即可實現對數據的全方位深度分析和模型構建。實現數據的關聯分析、未來趨勢預測等多種分析,幫助用戶發現數據中隱藏的關系及規律,精準預測「未來將發生什麼」。
產品特點:
1 極簡的建模過程
TempoAI通過為用戶提供一個機器學習演算法平台,支持用戶在平台中構建復雜的分析流程,滿足用戶從大量數據(包括中文文本)中挖掘隱含的、先前未知的、對決策者有潛在價值的關系、模式和趨勢的業務訴求,從而幫助用戶實現科學決策,促進業務升級。整個分析流程設計基於拖拽式節點操作、連線式流程串接、指導式參數配置,用戶可以通過簡單拖拽、配置的方式快速完成挖掘分析流程構建。平台內置數據處理、數據融合、特徵工程、擴展編程等功能,讓用戶能夠靈活運用多種處理手段對數據進行預處理,提升建模數據質量,同時豐富的演算法庫為用戶建模提供了更多選擇,自動學習功能通過自動推薦最優的演算法和參數配置,結合「循環行」功能實現批量建模,幫助用戶高效建模,快速挖掘數據隱藏價值。
2 豐富的分析演算法
TempoAI集成了大量的機器學習演算法,支持聚類、分類、回歸、關聯規則、時間序列、綜合評價、協同過濾、統計分析等多種類型演算法,滿足絕大多數的業務分析場景;支持分布式演算法,可對海量數據進行快速挖掘分析;同時內置了美林公司獨創演算法,如視覺聚類、L1/2稀疏迭代回歸/分類、稀疏時間序列、信息抽取等;支持自然語言處理演算法,實現對海量文本數據的處理與分析;支持深度學習演算法及框架,為用戶分析高維海量數據提供更加強大的演算法引擎;支持多種集成學習演算法,幫助用戶提升演算法模型的准確度和泛化能力。
3 智能化的演算法選擇
TempoAI內置自動擇參、自動分類、自動回歸、自動聚類、自動時間序列等多種自動學習功能,幫助用戶自動選擇最優演算法和參數,一方面降低了用戶對演算法和參數選擇的經驗成本,另一方面極大的節省用戶的建模時間成本。
4 全面的分析洞察
為了幫助用戶更好、更全面的觀察分析流程各個環節的執行情況, TempoAI提供了全面的洞察功能,通過豐富詳實的洞察內容,幫助用戶全方位觀察建模過程任意流程節點的執行結果,為用戶開展建模流程的改進優化提供依據,從而快速得到最優模型,發現數據中隱含的業務價值。
5 企業級的成果管理與應用能力
挖掘分析成果,不僅僅止步於模型展示,TempoAI全面支撐成果管理與應用,用戶在完成挖掘流程發布後,可基於成果構建服務或調度任務等應用,在成果管理進行統一分類及管理,可根據業務需求選擇應用模式:調度任務、非同步服務、同步服務、流服務及本地化服務包,滿足工程化的不同訴求。提供統一的成果分類統計、在線數量變化趨勢、日活躍數量變化趨勢、調用熱度、失敗率排名等成果統計功能,同時提供所有服務的統一監測信息,包括服務的調用情況及運行情況。幫助用戶高效便捷的管理成果、利用成果及監測成果。
6 完善的斷點緩存機制
TempoAI提供節點的斷點緩存機制,包括開啟緩存、關閉緩存、清除緩存、從緩存處執行、執行到當前節點、從下一個節點開始執行等功能,為用戶在設計端調試建模流程提供了高效便捷的手段,顯著提升用戶的建模效率。
7 靈活的流程版本及模型版本管理機制
為了方便用戶更好的對多次訓練產生的挖掘流程和模型進行管理,平台提供了流程版本及模型版本管理功能,支持用戶對流程的版本及模型的版本進行記錄和回溯,滿足用戶對流程及模型的管理訴求,提升用戶建模體驗。
8 跨平台模型遷移及融合能力
TempoAI平台支持PMML文件的導入和導出功能,可以實現跨平台模型之間的遷移和融合,利於用戶進行歷史模型的遷移,實現用戶在不同平台的模型成果快速共享,提升成果的復用性。
9 豐富的行業應用案例
TempoAI支持應用模板功能,針對不同行業的痛點內置了豐富的分析案例,「案例庫」一方面為用戶學習平台操作和挖掘分析過程提供指導,另一方面可以為用戶提供直接或間接的行業分析解決方案。
10 流數據處理功能
TempoAI提供流數據處理功能,包括kafka輸入(流)、kafka輸出(流)、SQL編輯(流)、數據連接(流)、數據水印(流),滿足用戶對實時流數據進行處理的需求。
11 一鍵式建模能力
TempoAI支持一鍵式建模功能,用戶只需輸入數據,該功能可以自動完成數據處理、特徵工程、演算法及參數選擇及模型評估等環節。節省了用戶AI建模的時間,提升了建模效率。讓用戶將有限的精力更多的關注到業務中,將建模工作交給平台,從而進一步降低AI建模的門檻。
Ⅸ 現在市面上有哪些好用的數據挖掘工具或者平台
現在市面上用得最多的數據挖掘工具要數思邁特軟體Smartbi Mining。它是是思邁特軟體Smartbi旗下的產品。思邁特軟體Smartbi Mining通過深度數據建模,可以為你提供預測能力,支持多種高效實用的機器學習演算法,包含了分類、回歸、聚類、預測、關聯,5大類機器學習的成熟演算法。其中包含了多種可訓練的模型:邏輯回歸、決策樹、隨 機森林、樸素貝葉斯、支持向量機、線性回歸、K均值、DBSCAN、高斯混合模型。除提供主要演算法和建模功能外,思邁特軟體Smartbi Mining數據挖掘平台還提供了必不可少的數據預處理功能。
還包括字 段拆分、行過濾與映射、列選擇、隨機采樣、過濾空值、合並列、合並行、JOIN、行選擇、去除重復值、排序、增加序列號、增加計算欄位等。
數據挖掘中通常涉及到四種任務:
分類:將熟悉的結構概括為新數據的任務
聚類:在數據中以某種方式查找組和結構的任務,而不需要在數據中使用已注意的結構。
關聯規則學習:查找變數之間的關系
回歸:旨在找到一個函數,用最小的錯誤來模擬數據。
思邁特軟體Smartbi是國家認定的「高新技術企業」,廣東省認定的「大數據培育企業」, 廣州市認定的「兩高四新企業」,獲得了來自國家、地方政府、國內外權威分析機構、行業組織、知名媒體的高度關注和認可,斬獲「大數據百強企業」。
思邁特軟體Smartbi也是「中國十佳商業智能方案商」、「中國科技創新企業100強」等100+榮譽獎項!憑借NLP和數據挖掘功能入選Gartner「中國AI創業公司代表廠商(2020)」,憑借Eagle自助分析平台入選「Gartner 增強分析2020代表廠商」。
數據挖掘工具靠不靠譜,來試試Smartbi,思邁特軟體Smartbi經過多年持續自主研發,凝聚大量商業智能最佳實踐經驗,整合了各行業的數據分析和決策支持的功能需求。滿足最終用戶在企業級報表、數據可視化分析、自助探索分析、數據挖掘建模、AI智能分析等大數據分析需求。
思邁特軟體Smartbi個人用戶全功能模塊長期免費試用
馬上免費體驗:Smartbi一站式大數據分析平台