當前位置:首頁 » 產品成貨 » 量化投資和金融產品哪個好
擴展閱讀
西亞地區有多少億桶石油 2025-06-07 06:11:54
換車能少哪些費用 2025-06-07 05:45:27
磚廠都有哪些成本 2025-06-07 05:28:02

量化投資和金融產品哪個好

發布時間: 2022-06-21 15:11:45

『壹』 量化投資的前景

隨著20世紀80年代以來各類證券和期權類產品的豐富和交易量的大增,華爾街已別無選擇,不用這些模型,不使用電腦運算這些公式,他們便會陷於困境,自招風險。1997~1998年亞洲金融危機,市場暴跌,量化投資的演算法交易也起到了同樣的壞作用。此外,始於2007年的金融危機中,量化投資也未能倖免。時過境遷,2011年,量化基金再次表現優異。
稍微接觸到資本市場的人,大都聽說過基本面投資和價值投資,而對於這方面的天才人物「股神」巴菲特,更是幾乎家喻戶曉,婦孺皆知。他以企業財務報表的分析見長,擅長挖掘企業的內在價值,一旦買入便長期持有,持續獲得穩定高額收益,為股東創造了豐厚利潤,無人能及。
相比之下,與價值投資同等重要的量化投資——即藉助數學、物理學、幾何學、心理學甚至仿生學的知識,通過建立模型,進行估值、擇時及選股,則沒有那麼幸運——在大多數人眼裡,量化投資是一個神秘的領域,深不可測,玄奧無比,令人望而卻步。世人皆知巴菲特,而對於號稱最能賺錢的基金經理人、在20年的時間里創造了年均凈回報率高達35%驚人傳奇的量化投資大師西蒙斯,卻只能成為少數人的專屬。
量化投資看似神秘,但並不古老。它從70年代開始逐漸興起,90年代才大行其道。之所以如此,是因為量化投資有其誕生的特定土壤,需要一系列的條件方能破土而出,這些條件其實相當苛刻。
很難想像,量化投資技術並非發端於華爾街,而是肇始於學術象牙塔里的少數「怪才」,他們長期不被正統的經濟學所接受,甚至遭到排斥,因此處境艱難。1952年3月發表「投資組合選擇」論文、提出現代財務和投資理論最著名洞見的馬克維茨,以該理論參加博士答辯,竟然戰戰兢兢差點未獲通過。1990年10月,這些人中有三位獲得諾貝爾經濟學獎,當時局外人很少有人清楚為什麼他們能夠得此殊榮;而三人中的其中一位則將他們的獲獎比作「芝加哥業余球隊贏得了世界盃」。
但是,沒有來自象牙塔的現代金融理論,便沒有量化投資的興起。馬克維茨的投資組合理論,提出了風險報酬和效率邊界概念,並據此建立了模型,成為奠基之作。托賓隨後提出了分離理論,但仍需要利用馬克維茨的系統執行高難度的運算。
夏普1963年1月提出了「投資組合的簡化模型」,一般稱為「單一指數模型」。馬克維茨模型費時33分鍾的計算,簡化模型只用30秒,並因節省了電腦內存,可以處理相對前者8倍以上的標的證券。1964年,夏普又發展出資本資產定價模型(CAPM),這是他最重要的突破,不僅可以作為預測風險和預期回報的工具,還可以衡量投資組合的績效,以及衍生出在指數型基金、企業財務和企業投資、市場行為和資產評價等多領域的應用和理論創新。
1976年,羅斯在CAPM的基礎上,提出「套利定價理論」(APT),提供一個方法評估影響股價變化的多種經濟因素。布萊克和斯克爾斯提出了「期權定價理論」。莫頓則發明了「跨期的資本資產定價模型」。
有趣的是,不少人最初並非經濟學家,如巴契里耶和布萊克原先是數學家,夏普則從事醫學,奧斯伯恩為天文學家,沃金與坎德爾是統計學家,而特雷諾則是數學家兼物理學家。他們轉行都是被金融市場研究所深深吸引,沉迷於其中的無窮魅力。
然而,僅有現代投資(行情 股吧 買賣點)理論的建立,及各類模型的完善與推陳出新,並不會直接催生出量化投資,它還需要其他幾個重要前提條件,比如機構投資者在市場中占據主導,電腦技術足夠發達,以及傳統華爾街投資家的傲慢被市場擊潰轉而被迫接受新的投資理念。
量化投資不會出現在個人投資者為主的時代。個人投資者既缺乏閑暇的時間,也普遍無此能力。隨著退休基金和共同基金資產的大幅增加,它們成為市場上的主要機構投資者,並委託專業機構進行投資操作。管理大規模資產,需要新的運作方式和金融創新技術,同時專業的投資管理人也有能力和精力專注地研究、運用這些技術。
沒有發達的電腦技術,量化投資也將成為無源之水,無米之炊。在電腦革命發生前,根本無法根據上述模型進行運算。1961年,與馬克維茨共同獲得1990年諾貝爾獎的夏普曾說,當時即使是用IBM最好的商用電腦,解出含有100隻證券的問題也需要33分鍾。當今,面對數不勝數的證券產品,以及龐大的成交量,缺了先進電腦的運算速度和容量,許多復雜的證券定價甚至不可能完成。
量化投資在不經歷市場的崩盤,傲慢投資者的自信未被摧毀之前,不會盛行。比較早的時候,華爾街對學術界把投資管理的藝術,轉化成通篇晦澀難懂的數學方程式一直持有敵意。他們認為,投資管理需要天賦、直覺以及獨特的駕馭市場的能力,基金經理可以獨力打敗市場,而無需依靠那些缺乏靈魂、怪異的數學符號和縹緲虛幻的模型。在美國,70年代初期表現最佳的基金經理人從未聽過貝塔值,並認為那些擁有數學和電腦背景的學者只是一群騙子。
1973~1974年美國債券市場和股票市場全面崩盤,明星基金經理人煙消雲散,財富縮水堪比30年代大蕭條。當時,頗有先見的投資顧問兼作家彼得·伯恩斯坦認為,必須採用更好的方法管理投資組合,並創辦了《投資組合》雜志,一出刊便獲得成功。此後,隨著80年代以來各類證券和期權類產品的豐富和交易量的大增.量化投資光彩炫目,但也具有魔鬼般的力量。它時而風光無限,但也常常墜入深淵。
1987年10月大股災,黑色星期一,當天股市和期貨成交量高達令人吃驚的410億美元,價值瞬間縮水6000億美元。很多股份直接通過電腦而不是經由交易所交易。一些採用投資組合保險策略的公司,在電腦模式的驅使下,不問價格機械賣出股票。很多交易員清楚這些投資組合會有大單賣出,寧願走在前面爭相出逃,加劇了恐慌。針對整個投資組合而非單個證券,機械式的交易,電腦的自動操作,使得這種量化投資出現助跌之效,大量的空單在瞬間湧出,將市場徹底砸垮。
在此次亞洲金融危機中,著名的長期資本管理公司,這家來自學術象牙塔的怪才充斥、主要運用量化投資技術的對沖基金,曾經在市場上呼風喚雨、無往不利,但偏偏遭遇俄羅斯國債違約這一小概率事件,陷入破產之境,迫使美聯儲集華爾街諸多投資銀行之力,加以救助。此外,始於2007年的金融危機中,量化投資也未能倖免。
雖然麻煩不斷,但量化投資依然必要且有效。要知道,在本次金融危機發生前,量化基金的表現連續8年超過其他投資方式。當然,挫折也會帶來量化投資技術的更新和完善,比如在模型中設定新的變數,尤其是加入以往並未包含的宏觀經濟參數。時過境遷,2011年,量化基金再次表現優異。雖然量化投資能否就此再度復興仍屬未知,但由本文先前的討論,漫漫歷史長河,此一趨勢已不可逆轉,量化投資依然擁有光明的未來。
德意志銀行的董事總經理、全球量化投資主管羅崟先生在激烈的競爭中脫穎而出,奪得全球最權威的《機構投資者》期刊2011年美國和歐洲量化分析第一名的佳績。在華爾街40餘年排名史上,罕有華人獲此殊榮。《金融時報》慧眼識金,就此專門做了訪談,並囑我就量化投資寫篇評論。我欣然命筆,並藉此祝願量化投資在中國的資本市場上,能夠早日生根。

『貳』 量化基金的優勢與劣勢分別是什麼

優點:有助於避免盲點,控制風險
缺點:應變能力不強,無法實現短期收益

量化基金

量化基金就是在大量歷史數據的分析基礎上,綜合考慮到各種各樣的投資方法,再藉助於計算機和數據分析來統計開發出適合當前市場的投資模型,依據投資模型來做出的投資決策。
其核心是通過數量化投資策略進行風險控制,再輔以主動投資的策略就可以在風險可控的情況下,獲取市場的超額收益。因為量化基金是通過對數據的統計和分析來指導投資,從而評價潛在投資標的的優秀與否,所以就會有明確的紀律性和效率性。首先,可以通過量化模型高效開展數據採集和分析,其次,量化選股可以保證選股過程的客觀,避免人性中的隨意性、減少主觀判斷造成的失誤、讓投資更趨理性。它通過人腦結合計算機的模式選取投資組合,能在模型基礎上建立投資體系,這也是它的最大優勢。

另外,量化基金突破了傳統和指數型投資的局限,在行情不好的時候還可以變成固收類基金產品。

量化基金缺點

量化基金的應變能力不強。量化基金模型結構上的相似性將直接影響模型的有效性以及流動性問題。如果市場行情突變,量化基金需要一段時間進行演算法的優化和調整。量化模型是要根據歷史數據來構建的,所以它吸收新的信息的能力是比較緩慢和遲鈍的。
而且採取量化基金之後無法追求相當高的收益額,量化基金往往關注的是長期業績。也就是說,如果投資者目標是追求短期收益,量化基金並不能完成這一個目的。除此以外,一旦外部環境發生變化或者發生某些重大事件,如果基本面上的變化等其有效性很可能就會受到影響。

『叄』 量化金融和金融工程的區別

量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。
事實上,互聯網的發展,使得新概念在世界范圍的傳播速度非常快,作為一個概念,量化投資並不算新,國內投資者早有耳聞。但是,真正的量化基金在國內還比較罕見。同時,機器學習的發展也對量化投資起了促進作用。

其實,定量投資和傳統的定性投資本質上是相同的,二者都是基於市場非有效或是弱有效的理論基礎,而投資經理可以通過對個股估值,成長等基本面的分析研究,建立戰勝市場,產生超額收益的組合。不同的是,定性投資管理較依賴對上市公司的調研,以及基金經理個人的經驗及主觀的判斷,而定量投資管理則是「定性思想的量化應用」,更加強調數據。

『肆』 量化金融和傳統金融有什麼不同

量化金融和傳統金融的區別是:量化金融學主要是涉及量化投資的一門新興金融學科。量化投資是以金融衍生品和工具為基礎的,對於數據和信息要求很高,是一個智慧型、智力型、智商型為主導的產業。
傳統金融,主要是指只具備存款、貸款和結算三大傳統業務的金融活動。廣義的壽命周期成本還包括消費者購買後發生的使用成本、廢棄成本等。簡單來說,金融就是資金的融通。金融是貨幣流通和信用活動以及與之相聯系的經濟活動的總稱,廣義的金融泛指一切與信用貨幣的發行、保管、兌換、結算,融通有關的經濟活動,甚至包括金銀的買賣,狹義的金融專指信用貨幣的融通。

『伍』 量化投資、量化交易、量化金融,這三者有什麼區別嗎

其二,行為金融學認為,投資者是不理性的。任何一個投資個體的判斷與決策過程都會不同程度地受到認知、情緒、意志等各種心理因素的影響。基金經理和投資研究員在一段時間跟蹤某隻股票之後,由於時刻關心股價的表現和基本面的變動,可能出現不同程度的情感依賴,「和股票談起戀愛」。即使出現了下跌趨勢,也可能因為過度自信、抵制心理等不理性的分析出發點而導致投資、薦股時的行為偏差。而量化投資依靠計算機配置投資組合,克服了人性弱點,使投資決策更科學、更理性。

『陸』 量化投資

沒有你想的書

我多年來都有關注這方面的書 可是也沒有在國內找到

數量化投資是將投資理念及策略通過具體指標、參數的設計,體現到具體的模型中,讓模型對市場進行不帶任何情緒的跟蹤;相對於傳統投資方式來說,具有快速高效、客觀理性、收益與風險平衡和個股與組合平衡等四大特點。量化投資技術幾乎覆蓋了投資的全過程,包括估值與選股、資產配置與組合優化、訂單生成與交易執行、績效評估和風險管理等,在各個環節都有不同的方法及量化模型:

一、估值與選股

估值:對上市公司進行估值是公司基本面分析的重要方法,在「價值投資」的基本邏輯下,可以通過對公司的估值判斷二級市場股票價格的扭曲程度,繼而找出價值被低估或高估的股票,作為投資決策的參考。對上市公司的估值包括相對估值法和絕對估值法,相對估值法主要採用乘數方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;絕對估值法主要採用折現的方法,如公司自由現金流模型、股權自由現金流模型和股利折現模型等。相對估值法因簡單易懂,便於計算而被廣泛使用;絕對估值法因基礎數據缺乏及不符合模型要求的全流通假設而一直處於非主流地位。隨著全流通時代的到來和國內證券市場的快速發展,絕對估值法正逐漸受到重視。

選股:在當前品種繁多的資本市場中,從浩瀚復雜的數據背後選出適合自己投資風格的股票變得越加困難。在基本面研究的基礎上結合量化分析的手段就可以構建數量化選股策略,主流的選股方法如下:

資產配置方法與模型
資產配置類別 資產配置層次 資產配置方法 資產配置模型
戰略資產配置 全球資產配置 大類資產配置 行業風格配置 收益測度 風險測度 估計方法 馬克維茨 MV 模型 均值 -LPM 模型 VaR 約束模型 Black-Litterman 模型
戰術資產配置 ( 動態資產配置 ) 周期判斷 風格判斷 時機判斷 行業輪動策略 風格輪動策略 Alpha 策略 投資組合保險策略

基本面選股:通過對上市公司財務指標的分析,找出影響股價的重要因子,如:與收益指標相關的盈利能力、與現金流指標相關的獲現能力、與負債率指標相關的償債能力、與凈資產指標相關的成長能力、與周轉率指標相關的資產管理能力等。然後通過建立股價與因子之間的關系模型得出對股票收益的預測。股價與因子的關系模型分為結構模型和統計模型兩類:結構模型給出股票的收益和因子之間的直觀表達,實用性較強,包括價值型(本傑明·格雷厄姆—防禦價值型、查爾斯·布蘭迪—價值型等)、成長型(德伍·切斯—大型成長動能、葛廉·畢克斯達夫—中大型成長股等)、價值成長型(沃倫·巴菲特—優質企業選擇法、彼得·林奇—GARP價值成長法等)三種選股方法;統計模型是用統計方法提取出近似線性無關的因子建立模型,這種建模方法因不需先驗知識且可以檢驗模型的有效性,被眾多經濟學家推崇,包括主成分法、極大似然法等。

多因素選股:通過尋找引起股價共同變動的因素,建立收益與聯動因素間線性相關關系的多因素模型。影響股價的共同因素包括宏觀因子、市場因子和統計因子(通過統計方法得到)三大類,通過逐步回歸和分層回歸的方法對三類因素進行選取,然後通過主成分分析選出解釋度較高的某幾個指標來反映原有的大部分信息。多因素模型對因子的選擇有很高的要求,因子的選擇可依賴統計方法、投資經驗或二者的結合,所選的因子要有統計意義上或市場意義上的顯著性,一般可從動量、波動性、成長性、規模、價值、活躍性及收益性等方面選擇指標來解釋股票的收益率。

動量、反向選股:動量選股策略是指分析股票在過去相對短期的表現,事先對股票收益和交易量設定條件,當條件滿足時買進或賣出股票的投資策略,該投資策略基於投資者對股票中期的反應不足和保守心理,在投資行為上表現為購買過去幾個月表現好的股票而賣出過去幾個月表現差的股票。反向選股策略則基於投資者的錨定和過度自信的心理特徵,認為投資者會對上市公司的業績狀況做出持續過度反應,形成對業績差的公司業績過分低估和業績的好公司業績過分高估的現象,這為投資者利用反向投資策略提供了套利機會,在投資行為上表現為買進過去表現差的股票而賣出過去表現好的股票。反向選股策略是行為金融學理論發展至今最為成熟,也是最受關注的策略之一。

二、資產配置

資產配置指資產類別選擇、投資組合中各類資產的配置比例以及對這些混合資產進行實時管理。資產配置一般包括兩大類別、三大層次,兩大類別為戰略資產配置和戰術/動態資產配置,三大層次為全球資產配置、大類資產配置和行業風格配置。資產配置的主要方法及模型如下:

戰略資產配置針對當前市場條件,在較長的時間周期內控制投資風險,使得長期風險調整後收益最大化。戰術資產配置通常在相對較短的時間周期內,針對某種具體的市場狀態制定最優配置策略,利用市場短期波動機會獲取超額收益。因此,戰術資產配置是在長期戰略配置的過程中針對市場變化制定的短期配置策略,二者相互補充。戰略資產配置為未來較長時間內的投資活動建立業務基準,戰術資產配置通過主動把握投資機會適當偏離戰略資產配置基準,獲取超額收益。

三、股價預測

股價的可預測性與有效市場假說密切相關。如果有效市場假說成立,股價就反映了所有相關的信息,價格變化服從隨機遊走,股價的預測就毫無意義,而我國的股市遠未達到有效市場階段,因此股價時間序列不是序列無關,而是序列相關的,即歷史數據對股價的形成起作用,因此可以通過對歷史信息的分析來預測股價。

主流的股價預測模型有灰色預測模型、神經網路預測模型和支持向量機預測模型(SVM)。灰色預測模型對股價的短期變化有很強的預測能力,近年發展起來的灰色預測模型包括GM(1, 1)模型、灰色新陳代謝模型和灰色馬爾可夫模型。人工神經網路模型具有巨量並行性、存儲分布性、結構可變性、高度非線性和自組織性等特點,且可以逼近任何連續函數,目前在金融分析和預測方面已有廣泛的應用,效果較好。支持向量機模型在解決小樣本、非線性及高維模式識別問題中有許多優勢,且結構簡單,具有全局優化性和較好的泛化能力,比神經網路有更好的擬合度。

四、績效評估

作為集合投資、風險分散、專業化管理、變現性強等特點的投資產品,基金的業績雖然受到投資者的關注,但要對基金有一個全面的評價,則需要考量基金業績變動背後的形成原因、基金回報的來源等因素,績效評估能夠在這方面提供較好的視角與方法,風險調整收益、擇時/股能力、業績歸因分析、業績持續性及Fama的業績分解等指標和方法可從不同的角度對基金的績效進行評估。

績效評估模型 / 指標

績效評估准則
擇時 / 股能力
業績歸因分析
風險調整收益
業績持續性
Fama 業績分解

模型 / 指標
T-M 模型

H-M 模型

GII 模型

C-L 模型
資產配置收益

證券選擇收益

行業選擇收益

行業內個股選擇收益
RAROC

Sharp, Stutzer

Treynor, Jensen

, ,
雙向表分析

時間序列相關性
總風險收益

系統風險收益

分散化投資收益

五、基於行為金融學的投資策略

上世紀50~70年代,隨著馬科維茨組合理論、CAPM模型、MM定理及有效市場假說的提出,現代金融經濟學建立了一套成熟的理論體系,並且在學術界占據了主導地位,也被國際投資機構廣泛應用和推廣,但以上傳統經濟學的理論基石是理性人假設,在理性人假設下,市場是有效率的,但進入80年代以後,關於股票市場的一系列研究和實證發現了與理性人假設不符合的異常現象,如:日歷效應、股權溢價之謎、期權微笑、封閉式基金折溢價之謎、小盤股效應等。面對這些金融市場的異常現象,諸多研究學者從傳統金融理論的基本假設入手,放鬆關於投資者是完全理性的嚴格假設,吸收心理學的研究成果,研究股市投資者行為、價格形成機制與價格表現特徵,取得了一系列有影響的研究成果,形成了具有重要影響力的學術流派-行為金融學。

行為金融學是對傳統金融學理論的革命,也是對傳統投資實踐的挑戰。隨著行為金融理論的發展,理論界和投資界對行為金融理論和相關投資策略作了廣泛的宣傳和應用,好買認為,無論機構投資者還是個人投資者,了解行為金融學的指導意義在於:可以採取針對非理性市場行為的投資策略來實現投資目標。在大多數投資者認識到自己的錯誤以前,投資那些定價錯誤的股票,並在股價正確定位之後獲利。目前國際金融市場中比較常見且相對成熟的行為金融投資策略包括動量投資策略、反向投資策略、小盤股策略和時間分散化策略等。

六、程序化交易與演算法交易策略

根據NYSE的定義,程序化交易指任何含有15隻股票以上或單值為一百萬美元以上的交易。程序化交易強調訂單是如何生成的,即通過某種策略生成交易指令,以便實現某個特定的投資目標。程序化交易主要是大機構的工具,它們同時買進或賣出整個股票組合,而買進和賣出程序可以用來實現不同的目標,目前程序化交易策略主要包括數量化程序交易策略、動態對沖策略、指數套利策略、配對交易策略和久期平均策略等。

演算法交易,也稱自動交易、黑盒交易或無人值守交易,是使用計算機來確定訂單最佳的執行路徑、執行時間、執行價格及執行數量的交易方法,主要針對經紀商。演算法交易廣泛應用於對沖基金、企業年金、共同基金以及其他一些大型的機構投資者,他們使用演算法交易對大額訂單進行分拆,尋找最佳路由和最有利的執行價格,以降低市場的沖擊成本、提高執行效率和訂單執行的隱蔽性。任何投資策略都可以使用演算法交易進行訂單的執行,包括做市、場內價差交易、套利及趨勢跟隨交易。演算法交易在交易中的作用主要體現在智能路由、降低沖擊成本、提高執行效率、減少人力成本和增加投資組合收益等方面。主要的演算法包括:交易量加權平均價格演算法(VWAP)、保證成交量加權平均價格演算法(Guaranteed VWAP)、時間加權平均價格演算法(TWAP)、游擊戰演算法(Guerrilla)、狙擊手演算法(Sniper)、模式識別演算法(Pattern Recognition)等。

綜上所述,數量化投資技術貫穿基金的整個投資流程,從估值選股、資產配置到程序化交易與績效評估等。結合量化投資的特點及我國證券市場的現狀,好買認為量化投資技術在國內基金業中的應用將主要集中在量化選股、資產配置、績效評估與風險管理、行為金融等方面,而隨著包括基金在內的機構投資者佔比的不斷提高、衍生品工具的日漸豐富(股指期貨、融資融券等)以及量化投資技術的進步,基金管理人的投資策略將會越來越復雜,程序化交易(系統)也將有快速的發展。

『柒』 量化投資有哪些優勢

量化投資就是藉助現代統計學、數學的方法,從海量歷史數據中尋找能夠帶來超額收益的多種「大概率」策略,並紀律嚴明地按照這些策略所構建的數量化模型來指導投資,力求取得穩定的、可持續的、高於平均的超額回報。量化投資屬主動投資范疇,本質是定性投資的數量化實踐,理論基礎均為市場的非有效性或弱有效性。
量化投資特點:
第一,投資視角更廣。藉助計算機高效、准確地處理海量信息,在全市場尋找更廣泛的投資機會。
第二,投資紀律性更強。嚴格執行數量化投資模型所給出的投資建議,克服人性的弱點。
第三,對歷史數據依賴性強。
量化投資策略有如下五大方面的優勢,最大的優勢就是風險管理更加精準,能夠提供超額的收益,主要包括紀律性、系統性、及時性、准確性、分散化等。
(1)紀律性:嚴格執行量化投資模型所給出的投資建議,而不是隨著投資者情緒的變化而隨意更改。紀律性的好處很多,可以克服人性的弱點,如貪婪、恐懼、僥幸心理,也可以克服認知偏差,行為金融理論在這方面有許多論述。
(2)系統性:量化投資的系統性特徵主要包括多層次的量化模型、多角度的觀察及海量數據的觀察等等。多層次模型主要包括大類資產配置模型、行業選擇模型、精選個股模型等等。多角度觀察主要包括對宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度的分析。
(3)及時性:及時快速地跟蹤市場變化,不斷發現能夠提供超額收益的新的統計模型,尋找新的交易機會。
(4)准確性:准確客觀評價交易機會,克服主觀情緒偏差,妥善運用套利的思想。量化投資正是在找估值窪地,通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會。與定性投資經理不同,量化投資經理大部分精力花在分析哪裡是估值窪地,哪一個品種被低估了,買入低估的,賣出高估的。
(5)分散化:在控制風險的條件下,充當准確實現分散化投資目標的工具。分散化也可以說量化投資是靠概率取勝。這表現為兩個方面,一是量化投資不斷的從歷史中挖掘有望在未來重復的歷史規律並且加以利用,這些歷史規律都是有較大概率獲勝的策略。二是依靠篩選出股票組合來取勝,而不是一個或幾個股票取勝,從投資組合理念來看也是捕獲大概率獲勝的股票,而不是押寶到單個股票上。

『捌』 金融考研,學碩金融理論與實踐方向和專碩的金融信息與量化投資方向哪個更好就業方向是什麼

我可以明確告訴你量化投資是以後的趨勢。你想賺錢就不要從事理論研究了,中國的金融分類也很奇葩。金融很赤裸,就是要給客戶賺錢,給公司賺錢,給國家賺錢,也給自己賺錢,這樣的人才是真正金融人。巴菲特早年也是研究理論,但是理論是為實踐服務的,不然理論有啥用?巴菲特索羅斯都是實戰派,但是哪位搞理論研究的敢說搞金融比他們厲害。中國不缺能賺錢的人,但是缺少這種投資大師。這種大師是金融戰的核心。你看現在美國對中國的金融戰,中國只能被動苦苦防守。看看美國金融戰的戰績,80年代搞垮日本,現在小日本都要看美國臉色;90年代初通過原油搞垮蘇聯;97年搞垮東南亞;08年把自己搞垮了,但是把風險轉到了全世界,現在他恢復了,其餘國家還在苦苦掙扎;去年和今年又通過原油搞垮俄羅斯。所以,為來中國金融而崛起,大家奮斗吧!搞金融只有自己或者自己代表的利益團體賺錢才是王道,理論都需要為這個服務。

『玖』 學習金融資產管理和量化投資 發展前景如何

相對於美國成熟的資產管理業務發展歷史,中國的資產管理有著12年年輕的歷史。正因為是起步階段,人們能看到其無限發展空間和巨大潛力。一些大的金融機構運用資產管理進行經營,在金融危機期間保持著盈利,業內不乏有成功案例。 資產管理業務有個兩難問題,即業務擴展和風險管理的平衡問題,也就說如果業務擴展太快,太多,風險控制就會弱,如果太關注於風險控制的話,可能業務擴展會慢。其實觀察成功的案例會發現,這兩點是可以做到平衡的。在國外金融機構會發現很多有意思的產品,比如氣象氣候、低碳、降雨量、體育等基金、債券,可是在中國卻是比較空白。其實這是市場細分的結果,舉個例子,如氣象基金,今年冬天會不會冷?如果不冷的話,使用的燃料能源就會少,就會影響這類產品,如果有天然氣產品,就可以進行價格對沖。這也是很多機構追求平穩發展來利用資產管理的原因。 拿期貨公司來說,未來將大大偏向程序化交易策略,由此形成成熟的人才團隊來更好地服務客戶,將會使期貨公司獲得永續發展,拓寬業務利潤獲取的范圍和深度。專家建議中國的資產管理業務應更重視專業性,對行業、公司、個人發展都是最重要的一點。根據麥肯錫的預計,中國的資產管理業務在未來的十年將保持每年24%的增長率,成為中國乃至世界發展最快的金融產業,可以說中國資產管理業將涌現出無限機遇。 目前國內的量化交易大概佔到市場交易量的20%,每年都在增加,特別是這兩年增長迅猛。70%的交易量由程序化交易完成,國內才剛剛起步,因此,國內的發展空間還非常巨大,產品的種類也會更加豐富,策略復雜度和交易工具的精細化也會不斷提高。 從投資者身份來看,目前量化投資者主要人群集中在期貨公司、私募基金以及券商的自營、基金公司的專戶。規模上,以私募基金為主要參與群體。 從操作風格來看,目前期貨市場有四類量化投資者,分別是阿爾法產品的使用者、趨勢性交易者、套利交易者以及高頻交易者。阿爾法產品的使用者,即利用股指期貨與股票現貨進行搭配,獲得股票的超額收益;趨勢性交易者,充分運用各種模型對價格進行預判,這種交易者的資金從幾萬到幾千萬都是存在的;套利交易,包括無風險的股指期現套利和統計套利;高頻交易者,這種一般利用期貨市場價格的微小變動進行快速交易,從而獲得高收益。 量化交易模式越來越被更多的機構投資者所採用,量化交易模式將會成為主流的交易模式。屆時,量化投資產品可能更加多樣化,量化投資將會成為金融機構爭奪客戶資源的主要工具,然後隨著量化工具更新速度的加快,量化投資的應用領域將會不斷拓寬。 由此可見,學習資產管理與量化投資對公司業務和個人的發展是十分迫切並且必要的。

『拾』 量化投資的量化投資

開設學校:對外經濟貿易大學
開設學院:統計學院
所屬學科:金融學
課程名稱:資產管理與量化投資方向
配備最強師資組合
對外經濟貿易大學在職研究生享受與統招研究生一模一樣的師資,均為碩導、博導。對外經濟貿易大學校長施建軍、統計學院副院長劉立新教授在該領域內享有很高聲譽,均參與在職研究生授課。
課程特有國際性、前沿性、實踐性
對外經貿大學自身國際化、前沿化特徵顯著,金融專業一直是對外經貿大學的優勢學科,所設課程同樣與國際金融市場接軌密切,如量化投資、統計套利、高頻交易等。
課程將資產管理和量化投資技術緊密結合
課程講授金融各行業資產管理業務的發展模式及運用,尤其是運用量化投資技術和程序交易進行資產管理:套利策略設計、投資方案實施、風險分析、市場預測等,旨在培養復合型的金融高級人才。
定期為在職研究生開展主題講座論壇
邀請政府和業內知名專家舉辦系列關於經濟金融政策分析、金融監管、金融市場投資、風險管理等方面專題講座。如:貴金屬市場投資、微量網量化投資、風險投資、投資銀行、對沖基金、等專題。 伴隨著金融全球化的進程,以及我國金融市場的發展創新,利用多市場、多品種、多策略的綜合投資和管理將成為未來資產管理、財富管理、風險管理、結構化產品設計的重要發展模式,尤其是運用量化投資技術和程序交易進行套利策略設計、投資方案實施、風險分析、市場預測等。
為適應政府、各類金融機構(銀行業、證券業、保險業、期貨業、信託業等)以及各類企事業單位對資產管理和投資分析人才迅速增長的需求,提高從事資產管理、金融市場投資、財富管理和養老金策劃、社會保障等領域在職人員的專業理論水平,尤其是運用量化投資方法進行資產管理,對外經貿大學特開設金融學專業資產管理與量化投資方向在職研究生課程,旨在培養復合型專業化人才。 資產管理已經成為我國金融市場的發展創新的重要領域,許多金融機構紛紛成立專門的資產管理公司以滿足社會發展的需求,而資產管理不僅需要對於各類型資產的了解、應用,更重要的是基於經濟金融的生態環境的變化進行綜合的、動態的資產管理。
學員通過資產管理與量化投資方向的專業學習,不僅可以掌握運用金融產品及投資理論進行資產管理的方法和技術,而且可以通過不同金融市場的實務操作、案例分析、專題講座了解現代資產管理的應用,掌握運用量化技術進行投資、融資、資產負債管理、財富管理的手段,為從事資產管理領域的工作提供必要的准備。 1、隨著國際國內金融市場的發展,現階段資產管理已經成為我國金融市場發展創新的重要領域;
2、加大資產管理業務是金融行業擴大資產規模,增加收益的最好選擇;
3、資產管理是企業追求長期穩定收益的必然選擇;
4、資產管理是普通投資人(家庭、個人投資理財)最受益的選擇方式;
5、資產管理是規範金融市場的有效途徑,極大的降低市場的波動率;
6、資產管理業務是金融從業人員的激勵和動力,促使金融從業人員優勝劣汰,優化金融團隊;
7、政府支持、政策支撐:資產管理為社會、金融業、企業、個體等均帶來巨大收益,自2012年開始政府大力支持,對其放寬政策,目的就是將此項業務堅定不移的開展下去。
報名條件:
1、從事社會工作三年以上的大專學歷者;
2、大學本科畢業三年,並獲得學士學位,可申請金融學專業經濟學碩士學位。 按照對外經貿大學金融學專業碩士研究生培養方案,根據資產管理與量化投資方向的具體情況實施課堂教學。
學位課程:
微觀經濟學 宏觀經濟學 財政學
國際經濟學貨幣銀行學 社會主義經濟理論
資產管理模塊:
投資組合與基金管理 固定收益與信託產品投資
保險規劃與財稅規劃 衍生產品與另類投資
量化投資模塊:
金融工程與量化投資 技術分析與高頻交易
金融統計與計量 統計套利與程序交易
金融市場、財務策劃模塊:
金融市場實務 理財規劃實務
金融風險管理 財務報表分析 1、申請學位按照對外經濟貿易大學研究生部學位辦公室關於以研究生畢業同等學力申請碩士學位的規定辦理。所交學費不包括進入論文階段後的費用。
2、報名參加研究生課程進修班學習的人員,可在報名時提出以研究生畢業同等學力申請碩士學位。
3、國家統一組織的英語和經濟學學科綜合水平考試,由我院協助學員到研究生部辦理手續,費用按規定由學員交納。
4、我院將為學員安排教師進行學位論文的指導。