1. 比如 關於個人知識石油專業方面的術語 概括下石油知識什麼的 最好是成品 給點硬磕!
石油知識———石油地質名詞解釋
油田------由單一構造控制下的同一面積范圍內的一組油藏的組合。
氣田------單一構造控制幾個或十幾個汽藏的總和。
石油------具有不同結構的碳氫化合物的混和物為主要成份的一種褐色。暗綠色或黑色液體。
天燃氣----以碳氫化合物為主的各種汽體組成的可燃混和氣體。
生油層----在古代曾經生成過石油的岩層。
油氣運移--在壓力差和濃度差存在的條件下,石油和天然氣在地殼內任意移動的過程。
垂直運移--即油氣運移的方向與地層層面近於垂直的上下移動。
測向運移---即油氣運移的方向與地層層面近於平行的橫向移動。
儲集層-----能使石油和天然氣在其孔隙和裂縫中流動,聚集和儲存的岩層。
含油層-----含有油氣的儲集層。
圈閉----凡是能夠阻止石油和天然氣在儲集層中流動並將其聚集起來的場所。
蓋層----緊鄰儲集層上下阻止油氣擴散的不滲透岩層。
隔層----夾在兩個相鄰儲集層之間阻隔二者串通的不滲透岩層。
遮擋----阻止油氣運移的條件或物體。
含油麵積----由含油內邊界所圈閉的面積。
油水邊界----石油和水的接觸邊界。
儲油麵積-----儲油構造中,含油邊界以內的平面面積。
工業油氣藏-----在目前枝術條件下,有開采價值的油氣藏。
構造油氣藏-----由與構造運動使岩層發生變形和移位而形成的圈閉。
地層油氣藏-----由地層因素造成的遮擋條件的圈閉。
岩性油氣藏-----由於儲集層岩性改變而造成圈閉。
儲油構造-----凡是能夠聚集油,氣的地質構造。
地質構造-----地殼中的岩層地殼運動的作用發生變形與變位而遺留下來的形態。
沉積相----指在一定的沉積環境中形成的沉積特徵的總和。
沉積環境-----指岩石在沉積和成岩過程中所處的自然地理條件、氣候狀況、生物發育狀況、沉積介質的
物理的化學性質和地球化學要條件。
單純介質-----只存在一種孔隙結構的介質稱為單純介質。如孔隙介質、裂縫介質等。
多重介質----同時存在兩種或兩種以上孔隙結構的介質稱為多重介質。
均質油藏-----整個油藏具有相同的性質。
非均質油藏-----具有不同性質的油藏,包括雙重介質油藏;裂縫西個油藏;多層油藏
彈性趨動-----油井開井後壓力下降,油層中液體會發生彈性膨賬,體積增大,而把原油推向井底。
水壓趨動----靠油藏邊水。底水或注入水的壓力作用把原油推向井底。
地質儲量----在地層原始條件下,具有產油氣能力的儲層中所儲原油總量。
可采儲量----在目前工藝和經濟條件下,能從儲油層中采出的油量。
剩餘可采儲量----油田投入開發後,可采儲量與累計采出量之差。
採收率-----油田采出的油量與地質儲量的百分比。
最終採收率----油田開發解束累計採油量與地質儲量的百分比。
采出程度---油田在某時間的累計採油量與地質儲量的比值。
採油速度----年采出油量與地質儲量之比。
原油密度----指在標准條件下(20度,0.1MPa)每立方米原油質量。
原油相對密度----指在地面標准條件(20度,0.1MPa)下原油密度與4度純水密度的比值。
原油凝固點----在一定條件下失去了流動的最高溫度。
原油粘度----原油流動時,分子間相互產生的摩檫阻力。
原油體積系數----地層條件下單位體積原油與地面標准條件下脫汽體積比值。
原油壓縮系數----單位體積地層原油在壓力改變0。1兆帕時的體積的變化率。
溶解系數----在一定溫度下壓力每爭加0。1兆帕時單位體積原油中溶解天燃汽的多少。
孔隙度----岩石中孔隙的體積與岩石總體積之比。
絕對孔隙度----岩石中全部孔隙的體積與岩石總體積之比。
有效孔隙度-----岩石中互相連通的孔隙的體積與岩石總體積之比。
含油飽和度-----在油層中,原油所佔的孔隙的體積與岩石總孔隙體積之比。
含水飽和度-----在油層中,水所佔的孔隙的體積與岩石孔隙體積之比。
穩定滲流-----在滲流過程中,如果各運動要素與(如壓力及流速)時間無關,稱為穩定。
不穩定滲流-----在滲流過程中,若各運動要素與時間有關,則為不穩定滲流。
等壓線----地層中壓力相等的各個點的連接線稱為等壓線。
流線-----與等壓線正交的線稱為流線。
流場圖----由一組等壓線和一組流線構成的圖形為流場圖。
單相流動-----只有一種流體的流動叫單相流動。
多相流動------兩種或兩種以上的流體同時流動叫兩相或多相流動。
滲透率----在一定壓差下,岩石允許液體通過的能力稱滲透性,滲透率的大小用滲透率表示。
絕對滲透率----用空汽測定的油層滲透率。
有效滲透率----用二種以上流體通過岩石時,所測出的某一相流體的滲透率。
相對滲透率----有效滲透率與絕對滲透率的比值。
水包油----細小的油滴在水介質中存在的形式。
油包水----細小的油滴在水介質中存在的形式。
供油半徑-----把油井供油麵積轉換成圓形面積後的圓形半徑。
地層系數----地層有效厚度與有效滲透率的乘積。
流動系數----地層系數與地下原油粘度的比值,表示流體在岩層中流動的難易程度。
導壓系數-----表示油層傳遞壓力性能好壞的參數。
續流-----油井地面關井後,井下仍有油流從地層中繼續流入井眼,這種現象稱為續流。
井筒儲存效應-----油井剛關井時所出現的現象。
折算半徑----把實際井的各個因素(不完善或超完善)對壓力的影響,變成一個由於某井徑引起對壓力
的等效作用,這個等效半徑稱為折算半徑。
完善程度-----指理想完善井的工作壓差與實際井工作壓差之比。
完善指數-----油井實際工作壓差與壓力恢復取限制線段斜率之比。
表皮效應-----實際井的各個非完善因素造成的附加壓力同油層滲透阻力之比。它是當原油從油層流入井
筒時,產生一個壓力降的現象。
井間干擾-----井與井之間產生的動態影響現象。
採油指數----油井生產壓差每增大0.1兆帕,所增加的油量。
柵狀圖-------表示油層各個方向的岩性,岩相變化情況,層間;井間連通情況。
主力油層-----油層厚度大,滲透率高,的好油層。
接替層-----在油田穩產中起接替作用的油層。
見水層位-----注入水沿連通層向油井推進,使油井某一層含水。
來水方向-----採油井受某方向注水井注水效果而使動態變化叫來水方向。
掃油麵積系數-----指一個開采井組,已被水淹的油層面積與所控制面積的比值。
注采平衡----注入油層水量與采出油量的地下體積相等。
注采比-----油田注入劑(水,氣)地下體積與采出液量(油,氣,水)的地下體積之比。
吸水指數----注水井在單位注水壓差下的日注水量。
注水強度----注水井在單位有效厚度油層的日注水量。
壓力平衡-----注水井所補給油層的壓力與采出油。水所削耗的壓力相等。
地下虧空----注入水的體積小於采出液量的地下體積。
含水率----含水油井,日產水量與日產液水量的百分比。
井別----根據鑽井目的和開發的要求,把井分為不同的類別。
探井----經過地球物理堪探證實有希望的地質構造為了探明地下情況,尋找油。汽田而鑽的井。
資料井-----為了編制油田開發方案所需要的資料而鑽的取心井。
生產井----用來採油的井。
注水井----用來向油層內注水的井。
觀察井----專門用來觀察油田地下動態的井。
檢查井----為了檢查油層開發效果而鑽的井。
更新井-----為了注采系統完善,需要打新井,這些新鑽的井叫更新井。
調整井----在原有井網基礎上,為改善油田開發效果,而補充鑽的一些另散井或成批成排的加密井。
正注井---從油管向地層注水的井稱為正注井。
反注井---從套管向地層注水的井稱為反注井。
井網----油氣水井在油田上的排列和分布。
精度----反映測試儀器;儀表和計量器具誤差大小的程度。
誤差----測量值與真實值之差。
油補距----從油管掛平面到鑽盤補心的距離。
套補距----從套管最末一根節箍上平面到鑽盤補心的距離。
靜水柱壓力-----從井口到油層中部的水柱壓力。
原始地層壓力-----油田還沒有投入開發,在探井中測得的油層中部壓力。
目前地層壓力-----油田投入開發以後,某一時期測得的油層中部壓力。
油壓----原油從井底流到井口的剩餘壓力。
套壓----油套環形空間內的壓縮汽體壓力。
流壓----油井正常生產時測得的油層中部壓力。
靜壓----油井投入生產以後,利用短期關井,待井底壓力恢復穩定時,測得的油層中部壓力。
飽和壓力----溶解在原油中的天燃汽剛剛開始分離時的壓力。
基準面壓力----在油田開發過程中,為了正確地對比井與井之間的力高低,把壓力折算到同一海拔深度
進行比較,相同海拔深度壓力稱基準面壓力。
壓力系數----指原始地層壓力與靜水柱壓力的比值。
總壓差-----目前地層壓力與原始地層壓力的差值。
採油壓差------目前地層壓力與流壓的差值。
流飽壓差----指流壓與飽和壓力的差值。
地飽壓差----指目前地層壓力與飽和壓力的差值。
注水壓差-----指注水井井底流壓與靜壓的差值。
流壓梯度----油井正常生產時每米液柱所產生的壓力。
靜壓梯度-----油井關井以後,井底壓力恢復穩定時,每米液柱所產生的壓力。
機戒採油-----用各種機戒將油採到地面上來的方法。
抽油機----是代動井下抽油泵工作的地面機戒。
抽油桿----是抽油機井的細長桿件,它上接總桿,下接抽油泵起傳遞動力的作用。
光桿----是鋼質圓形桿件,它上連抽油機下連抽油桿,起傳遞動力的作用。
懸繩器----是驢頭和光桿的連接裝置。
抽油泵-----由抽油機帶動把井內原油舉升到地面的井下裝置。
套管----用水泥固定在井壁上的鋼管,起封隔油汽水層。加固油層。井壁的作用。
油管----下入套管中間的無縫鋼管。
靜液面----抽油機關井後,環空液面緩升到一定位置穩定下來的液面。
動液面----抽油機正常生產時,井口至液面的距離。
泵效----抽油泵的實際排量與理論排量的比值。
沉沒度-----泵深與動液面的差值。
沖程----驢頭往復運動,帶動光桿運動的高點和低點的距離。
沖數----抽油泵活塞在工作筒內每分鍾往復運動的次數。
充滿系數----抽油泵活塞完成一次沖程時泵內進入油的體積和活塞讓出的體積的比。
氣鎖-----深當深井泵內進入氣體後,使泵抽不出油的現象。
示功圖----示功儀在抽油機一個抽吸周期內測取的封閉曲線。
壓裂-----利用水力作用,使油層形成裂縫的方法。
合層壓裂----指對日口井中的生產層組的各個小層同時壓裂。
單層選壓-----是選擇一個層組中的某一小層或某一段進行壓裂。
油層破裂壓力-----指油層破裂時的壓力或油層剛開始吸水時的壓力。
污染井---污染系數大於零的油層為污染井。
完善井---污染系數等於零的油層為完善井。
超完善井---污染系數小於零的油層為超完善井。
酸化井---污染系數小於-3的油層為酸化井。
吸水啟動壓力----油層剛開始吸水時的壓力稱吸水啟動壓力。
驅動方式----驅使原油流向井底的動力來源方式稱驅動方式。
注水強度-----單位有效厚度的日注水量稱注水強度。
含水率-----日產水量與日產液量的比值稱含水率。
串槽--各層段沿油井套管與水泥環或水泥環與井壁之間的串通。
完鑽井深----完鑽井底至方補心頂面的距離。
水泥返高----套管和井壁之間水泥上升的高度。
人工井底----固井完成留在套管最下部的一段水泥的頂面。
水泥塞----從完鑽井底至人工井底的水泥柱。
流度-----地層隙數與地下原油粘度的比值叫流度。
機誡採油----利用各種機誡將油採到地面上來的方法叫機誡採油。
表皮因子-----表皮效應性質的嚴重程度稱表皮因子。
油層中部深度----油水井井口至射孔井段(頂部至底部)1/2處。
供油半徑---在多井生產時,油水井在地下控制一定范圍的含油麵積含油麵積的半經稱為供油半經。
石油知識———油氣勘探知識
石油成因的學說
主要有無機成因和有機成因學說。多數學者認為石油主要是有機成因的。
生油岩
按照有機成因學說,大量的微體生物遺骸與泥砂或碳酸質沉澱物埋藏在地下,經過長時期的物理化學作用,形成富含有機質的岩石,其中的生物遺骸轉化為石油。這種岩石稱為生油岩。
儲集層
是指能夠儲存和滲濾油氣的岩層,它必須具有儲存空間 (孔隙性 )和儲存空間一定的連通性 (滲透性 )。儲集層中可以阻止油氣向前繼續運移,並在其中貯存聚集起來的一種場所,稱為圈閉或儲油氣圈閉。
油氣藏
圈閉內儲集了相當多的油氣,就稱為油氣藏。
油氣田
在地質意義上,油氣田是一定 (連續 )的產油麵積內各油氣藏的總稱。該產油麵積是受單一的或多種的地質因素控制的地質單位。
油氣聚集帶
油氣聚集帶是油氣聚集條件相似的、位置鄰近的一系列油氣藏或油氣田的總和。它具有明確的地質邊界。區,形成年產原油 430萬噸和天然氣 3.8億立方米生產能力。
含油氣盆地
在地質歷史上某一時期的沉降區,接受同一時期的沉積物,有統一邊界,其中可形成並儲集油氣的地質單元,稱做含油氣盆地。
生油門限
生油岩在地質歷史中隨著埋藏在地下的深度加大,受到的壓力和溫度增加,其中的有機質逐步轉變成油或氣。當生油岩的埋藏到達大量生成石油的深度 (也是與深度相應溫度 )時,叫進入生油門限。
油氣地質儲量及其分級
油氣地質儲量就是油氣在地下油藏或油田中的蘊藏量,油以重量 (噸 )為計量單位,氣以體積 (立方米 )為計量單位。地質儲量按控製程度及精確性由低到高分為預測儲量、控制儲量和探明儲量三級。地處豫西南的南陽盆地,礦區橫跨南陽、駐馬店、平頂山三地市,分布在新野、唐河等 8縣境內。已累計找到 14個油田,探明石油地質儲量 1.7億噸及含油麵積 117.9平方公里。 1995年年產原油 192萬噸。
油 (氣 )按儲量可分
按最終可采儲量值可分成 4種:特大油 (氣 )田:石油最終可采儲量大於 7億噸 (50億桶 )的油田。天然氣可按 1137米 3氣 =1噸原油折算。大型油 (氣 )田:石油最終可采儲量 0.7~ 7億噸 (5~ 50億桶 )的油 (氣 )田。中型油 (氣 )田:石油最終可采儲量 710~ 7100萬噸 (0.5~ 5億桶 )的油 (氣 )田。小型油 (氣 )田:石油最終可采儲量小於 710萬噸 (5000萬桶 )的油 (氣 )田。
按圈閉類型劃分油氣藏
有構造油氣藏、地層油氣藏和岩性油氣藏三大類。後兩類比較難於發現,勘探難度大,稱為隱蔽圈閉油氣藏。
岩石分類
岩石分沉積岩、火成岩及變質岩三大類。多數油、氣儲存於沉積岩中,火成岩及變質岩中也可以儲存油、氣。常見的沉積岩有砂岩、礫岩、泥岩、頁岩、石灰岩及白雲岩等。
地層及其單位
岩石 (特別是沉積岩 )常常是由老到新呈現為層狀排列的,因而把這些排列在一起的岩石統稱為地層。地層的單位有大有小,因其成因和時代及工作需要可把排列在一起的岩石劃分為不同的地層單位和系統。
地層時代劃分
地層形成的年代有老有新,通常把地層的時代由老至新劃分為太古代、元古代、古生代、中生代、新生代等,與 「 代 」 相對應的地層單位則稱為 「 界 」 ,如太古界、 …… 新生界等。 「 代 」 可以細分為 「 紀 」 ,如中生代分為三疊紀、侏羅紀、白堊紀,新生代分為第三紀、第四紀等,與 「 紀 」 相對應的地層單位稱為 「 系 」 ,如侏羅系、第三系等。 「 紀 」 和 「 系 」 還可以再詳細劃分,如油、氣勘探開發工作中常用到的 「××× 組 」 和 「××× 層 」 ,就是更小的地層單位。
三維地震勘探
由於地震勘探的測線只提供了二維的信息,要了解一定面積內的地下情況需要把各條測線的地震剖面進行對比,找出相關的信息推斷測線之間的地下情況,才能形成整體概念,這就可能產生相當大的人為誤差。三維地震是在一定的面積上採用地下地震信息的方法,它可從三維空間 (立體的 )了解地下地質構造情況。這種方法可以提供剖面的、平面的,立體的地下地質圖構造圖象,大大地提高了地震勘探的精確度,對地下地質構造復雜多變的地區特別有效。
高凝油
通常把凝固點在 40℃ 以上,含蠟量高的原油叫高凝油。遼寧省的沈陽油田是我國最大的高凝油田,其原油的最高凝固點達 67℃ 。
稠油
稠油是瀝青質和膠質含量較高、粘度較大的原油。通常把地面密度大於 0.943、地下粘度大於 50厘泊的原油叫稠油。因為稠油的密度大,也叫做重油。我國第一個年產上百萬噸的稠油油田是遼寧省高升油田。
天然氣
地下采出的可燃氣體稱做天然氣。它是石蠟族低分子飽和烴氣體和少量非烴氣體的混合物。天然氣按成因一般分為三類:與石油共生的叫油型氣 (石油伴生氣 );與煤共生的叫煤成氣 (煤型氣 );有機質被細菌分解發酵生成的叫沼氣。天然氣主要成分是甲烷。
干氣和濕氣
油田的伴生天然氣,經過脫水、凈化和輕烴回收工藝,提取出液化氣和輕質油以後,主要成分是甲烷的處理天然氣叫干氣。一般來說,天然氣中甲烷含量在 90%以上的叫干氣。甲烷含量低於 90%,而乙烷、丙烷等烷烴的含量在 10%以上的叫濕氣。
天然氣與液化石油氣區別
天然氣是指蘊藏在地層內的可燃性氣體,主要是低分子烷烴的混合物,可分為干氣天然氣和濕天然氣兩種。干氣成分主要是甲烷,濕天然氣除含大量甲烷外,還含有較多的乙烷、丙烷和丁烷等。液化石油氣是指在煉油廠生產,特別是催化裂化、熱裂化、焦化時所產生的氣體,經壓縮、分離而得到的混合烴,主要成分是丙烷、丙烯、丁烷、丁烯等。
沉積相
指在一定的沉積環境下形成的岩石組合。在沉積環境中起決定作用的是自然地理條件的不同,一般把沉積相分為陸相、海相和海陸過渡相。
油氣盆地數值模擬技術
油氣盆地數值模擬技術主要是從盆地石油地質成因機制出發,將油氣的生成、運移、聚集合為一體,充分研究各種地質參數,建立數字化動態模型,並形成一維~三維的計算機軟體,全方位的描述一個盆地的油氣資源形成及地質演化過程。
石油勘探
所謂石油勘探,就是為了尋找和查明油氣資源,而利用各種勘探手段了解地下的地質狀況,認識生油、儲油、油氣運移、聚集、保存等條件,綜合評價含油氣遠景,確定油氣聚集的有利地區,找到儲油氣的圈閉,並探明油氣田面積,搞清油氣層情況和產出能力的過程。
地震勘探
地震勘探是地球物理勘探中一種最重要的的方法。它的原理是由人工製造強烈的震動 (一般是在地下不深處的爆炸 )所引起的彈性波在岩石中傳播時,當遇著岩層的分界面,便產生反射波或折射波,在它返回地面時用高度靈敏的儀器記錄下來,根據波的傳播路線和時間,確定發生反射波或折射波的岩層界面的埋藏深度和形狀,認識地下地質構造,以尋找油氣圈閉。
多次覆蓋
多次覆蓋是指採用一定的觀測系統獲得對地下每個反射點多次重復觀測的採集地震波訊號的方法。它可以消除一些局部的干擾,有利於求得較准確的訊號。
地震剖面
地震勘探方法是在地面上布置一條條的測線,沿各條測線進行地震施工採集地震信息,然後經過電子計算機處理就得出一張張地震剖面圖。經過地質解釋的地震剖面圖就象從地面向下切了一刀,在二維空間 (長度和深度方向 )上顯示了地下的地質構造情況。
地震勘探的數據處理
把記錄採集到地震信息的磁帶上的大量數據輸入到專用的電子計算機中,按照不同的要求用一系列功能不同的程序進行處理運算,把數據進行歸類編排,突出有效的,除去無效和錯誤的,最後把經過各種處理的數據以波形、線形的形式繪制在膠片上或靜電紙上,形成一張張地震剖面。這個過程就稱做數據處理。
地震勘探中所說的速度
地震勘探所說的速度即是地震波的傳播速度。常用的是平均速度,它是地震波垂直穿過某一岩層界面以上各地層的總厚度與各層傳播時間總和之比,可以用來把地震記錄的時間轉換為深度 (距離 )。此外,還有層速度、均方根速度、疊加速度等。
水平疊加剖面
在用多次覆蓋方法採集的地震資料處理過程中,把共同反射點的許多道的記錄經動校正以後疊加起來,以提高訊噪比 (高訊號與雜訊的比例 ),壓制干擾,用這種方法處理所得到的地震剖面叫水平疊加剖面。
疊加偏移剖面
在地震資料處理中,在水平疊加的基礎上,實現反射層的空間自動歸位,用這種方法處理得到的地震剖面,就是疊加偏移剖面。
垂直地震剖面
地震源放置於地面,接收的檢波器置於深井中,地面激發震動後由不同深度的檢波器接收地震波訊號,這種方法獲得的地震波訊號是單程的,而不是反射或折射回來的,對分析和認識地下地質構造情況更為准確。
地震資料解釋
地震資料解釋是把經過處理的地震信息變成地質成果的過程,包括運用波動理論和地質知識,綜合地質、鑽井、測井等各項資料,做出構造解釋、地層解釋,岩性和烴類檢測解釋及綜合解釋,繪出有關的成果圖件,對測區作出含油氣評價,提出鑽井位置等。
地震地層學
地震地層學是把地層學和沉積學特別是岩性、岩相的研究成果,運用到地震解釋工作中,把地震資料中蘊藏的地層和沉積特徵的信息充分利用起來,做出系統解釋的方法。
地震層序
地震層序是沉積層序在地震剖面圖上的反映。在地震剖面圖上找出兩個相鄰的反映地層不整合接觸的界面,則兩個界面之間的地層叫做一個地震層序。但因為受不整合面影響,其間的地層即地震層序是不完整的,沿不整合面追蹤到地層變成整合的之後,這個地震層序才是完整的。
層序地層學
層序地層學是在地震地層學基礎上進一步發展的新學科,是綜合地質、地震資料,詳細劃分並確立地下地層的層序,從而研究其構造活動、沉積環境的變化、岩相分布等。
地震相
地震相是指沉積物 (岩層 )在地震剖面圖上所反映的主要特徵的總和。地震相標志分為:內部反射結構;反射連續性;反射振幅;反射頻率;外部幾何形態及其伴生關系。
合成地震記錄
合成地震記錄是用聲波測井或垂直地震剖面資料經過人工合成轉換成的地震記錄 (地震道 )。它是地震模型技術中應用非常廣泛的一種,也是層位標定、油藏描述等工作的基礎,是把地質模型轉化為地震信息的中間媒介。
油氣檢測技術
油氣檢測技術是一種綜合利用烴類存在的多種地震特性參數 (速度、頻率、振幅、相位等 )來確定油氣富集帶的方法。這類技術有許多種,目前常用的有亮點技術和 AVO技術等。
儲集層預測技術
儲集層預測技術是綜合應用地震、地質、鑽井、測井等各項資料對地下儲集層的分布、厚度及岩性和物理性質變化進行追蹤和預測的一項先進技術。
地震橫波勘探
地震波 (彈性波 )的傳播有縱波與橫波兩種,縱波質點位移的方向與波的傳播方向平行,橫波的質點位移方向與波的傳播方向垂直。現在通用的地震勘探方法採集的是縱波的訊號,採集橫波訊號的稱做地震橫波勘探。橫波在判斷岩性、裂縫和含油氣性方面有其固有的優點。此種勘探方法在我國正處於研究和實驗階段。
重力勘探
各種岩石和礦物的密度 (質量 )是不同,根據萬有引力定律,其引力也不相同。椐此研究出重力測量儀器,測量地面上各個部位的地球引力 (即重力 ),排除區域性引力 (重力場 )的影響,就可得出局部的重力差值,發現異常區,這一方法稱做重力勘探。它就是利用岩石和礦物的密度與重力場值之間的內在聯系來研究地下的地質構造。
磁力勘探
各種岩石和礦物的磁性是不同的,測定地面上各部位的磁力強弱以研究地下岩石礦物的分布和地質構造,稱做磁力勘探。由於地球本身就是個大磁體,所以對磁力的預測值應進行校正,求出只與岩石礦物磁性有關的磁力異常。一般鐵磁性礦物含量愈高,磁性愈強。在油氣田區,由於烴類向地面滲漏而形成還原環境,可把岩石或土壤中的氧化鐵還原成磁鐵礦,用高精度的磁力儀可以測出這種磁異常,從而與其它勘探手段配合,發現油氣田。 ?
電法勘探
電法勘探的實質是利用岩石和礦物 (包括其中的流體 )的電阻率不同,在地面測量地下不同深度地層介質電性差異,用以研究各層地質構造的方法,對高電阻率岩層如石灰岩等效果明顯。電法勘探種類較多,我國目前石油電法勘探一般用直流電測深、大地電磁測深、可控源聲頻大地電磁測深等方法,近期又發展了差分標定電法、大地電場岩性探測法等新方法。
地球化學勘探
根據大多數油氣藏的上方都存在著烴類擴散的 「 蝕變暈 」 的特點,用化學的方法尋找這類異常區,從而發現油氣田,就是油氣地球化學勘探。油氣地球化學勘探方法的種類比較多,常用的是土壤烴氣體測量、土壤硫酸鹽法、穩定碳同位素法、汞和碘測量法等,還有地下水化學法及井下地球化學勘探法。
地球物理測井
地球物理測井簡稱測井,是在鑽孔中使用測量電、聲、熱、放射性等物理性質的儀器,以辨別地下岩石和流體性質的方法,是勘探和開發油氣田的重要手段。
2. 什麼是石油物探
石油物探
根據地下岩層物理性質的差異,通過物理量測量,對地質構造或岩層性質進行研究,以尋找石油和天然氣的地球物理勘探,簡稱石油物探。
在石油勘探中,對於被表土、沙漠和海水覆蓋沒有岩層直接出露的地區,主要依靠物探方法間接了解地質構造和岩層性質,以尋找油氣藏。目前,石油物探已成為覆蓋區勘探石油的一種不可缺少的手段。
簡史:石油物探是在20世紀初發展起來的。最早使用的物探方法是重力勘探。1922年,首次成功地應用扭秤在墨西哥灣沿岸探測到和鹽丘構造有關的油藏。1935年,重力儀開始用於石油物探。
1919年,德國人明特羅普 (L.Mintrop)提出了地震折射法。用此法在墨西哥灣沿岸尋找鹽丘構造,並獲得了成功。1927年,在美國俄克拉何馬州使用地震反射法也成功地發現了毛德油田。
中國的石油物探工作,從1949年中華人民共和國成立後,才得到發展,並取得很大成績。1959年,應用物探方法與石油地質、石油鑽探相結合,找到了大慶油田,以後又陸續發現了勝利油田、大港油田、華北油田等油田。
勘探階段:
石油物探工作大致可劃分為區域普查和構造帶勘探兩大階段。
區域普查階段
這個階段在有含油氣遠景的沉積盆地進行重力法和磁法普查,其成果圖比例尺為1:500000~1:1000000,在油氣勘探有利的地區進一步進行重力法和磁法詳查,其成果圖的比例尺為1:100000~1:200000。配合電測深、大地電流法和少量地震法普查工作,劃分盆地內的區域構造單元,確定沉積凹陷,並進一步評價沉積凹陷和圈定二級構造帶,為進一步開展石油物探工作提供有利的地區和構造帶。
構造帶勘探階段 :
在區域普查階段提供的有利地區和構造帶上,開展地震法普查和詳查工作,確定可能的含油氣構造和油氣圈閉,為石油鑽探工作提供井位。中國已發現的油氣田中,多數是根據地震勘探資料進一步進行鑽探發現的。
勘探方法:
石油物探有重力勘探、磁法勘探、電法勘探、地震反射法和地震折射法等,也可包括地球物理測井。
重力勘探
用於了解地殼深部結構和基底表面起伏,劃分區域構造單元;在有利條件下,也可用來了解沉積岩層內部構造,尋找可能的含油氣構造。重力勘探是根據地下岩層密度的差異,測量地球重力場的相對變化,了解地下地質構造的。重力勘探比較簡便、成本較低,但勘探精度較差並具有多解性,一般用於區域普查階段。
磁法勘探
用於了解基底表面起伏,估計沉積岩層的厚度,劃分區域構造單元。磁法勘探是根據地下岩石磁性的差異測量地磁場的相對變化,了解地質構造的。根據磁異常所計算出來的磁性體埋藏深度,可以了解基底表面起伏和基底內部結構,也可反映沉積岩中的火成岩侵入或噴發的情況。磁法勘探與重力勘探相似,它的勘探操作簡便,成本較低,但勘探精度較差,一般只適用於區域普查階段。
電法勘探
用於了解基底表面起伏,劃分區域構造單元;在條件有利的地區,還可了解沉積岩層內部構造;在適當條件下,也可利用它尋找石油和天然氣。電法勘探是根據地下岩層的電阻率等電學性質及電化學性質的差異,了解地質構造和尋找油氣藏。在石油勘探中,電測深法、大地電流法和大地電磁法以及激發極化法應用較多,其設備比重力法和磁法復雜,成本也較高,但探測精度優於重力法和磁法,一般也適用於區域普查階段。
地震勘探
在石油物探中是探測精度最高的一種方法,特別是地震反射法,但勘探成本高於其他石油物探方法。由於它的勘探效果較好,已成為石油物探中最有力的勘探手段,應用最廣。地震勘探方法主要分為反射法和折射法兩大類。
1 地震反射法 用此法可以了解地殼深部結構和基底表面起伏,研究地殼內部結構和劃分區域構造單元;尋找和勘探各種可能的含油氣構造,通過鑽探尋找構造,圈閉油氣藏;還可以了解沉積岩層的岩性和岩相變化,與地質和鑽探相結合,尋找岩性圈閉或岩性與構造復合圈閉油氣藏;在條件有利的地區,還可能直接找礦。
地震反射法的基礎是地下岩層的波阻抗的差異。沉積岩層的岩相變化及岩石孔隙中所含流體(油、氣、水)性質的不同,使岩層的波阻抗發生變化,影響地震反射波的振幅。根據地震反射法所記錄的反射波走時,可以計算出波的速度和反射界面的埋藏深度,從而了解基底表面起伏和沉積岩內部構造。根據記錄的地震反射波振幅等特點,以及所計算出來的地震波速度等資料,可以了解地下岩層的岩性、岩相變化和岩石孔隙中所含流體的性質。
用地震反射法通常可以觀測到界面深度達6000米左右或更深的反射。因而,使用地震反射法可在幾公里深的整個沉積剖面中,了解各種不同深度的地質構造,尋找與背斜、斷層、斷塊和鹽丘構造等有關的構造圈閉油氣藏。地震反射法提供的地下地質構造精度很高,在理想條件下,得到的地質構造起伏的誤差在3~6米范圍內,確定斷層落差的精度可達10米左右。地震反射法雖然能作出具有明顯波阻抗差異的任何反射層的構造圖,但沒有鑽井資料和地質資料,是不能確定各反射層的地質層位的。因此在對地震反射法資料進行解釋時,必須同地質資料和鑽井資料緊密結合起來,避免出現差錯。
地震反射法還用來研究地下岩層的岩性和岩相變化情況,試驗尋找與地層遮擋、岩性尖滅、礁塊和古潛山等有關的岩性圈閉油氣藏,或構造與岩性復合圈閉油氣藏。從地震反射法資料可以得到沉積岩層變薄的趨勢,或岩性變化的顯示。但是,單純利用地震反射法資料,目前還不能解決與岩相變化有關的地層圈閉油氣藏的勘探問題,必須將地震反射法資料同測井資料、物性資料、地質資料和鑽探資料密切結合進行綜合解釋。利用地震反射波的振幅增強及其他和油氣有關的地震波標志,可以直接尋找石油和天然氣。在新生代沉積盆地中尋找較淺的砂岩貯氣層,這種勘探方法取得了較好的效果;但在古老的沉積盆地中尋找較深的含油層,則受到較大的限制。
2地震折射法 此法可以用來了解基底表面起伏,劃分區域構造單元,了解沉積岩層內部構造,尋找可能的含油氣構造;利用所求出的界面速度研究地層的岩性。根據所記錄下來的地震折射波走時,可以求出地下高速界面如基底、鹽丘、炭酸鹽岩的埋藏深度和起伏形態,並且可以計算出地震波沿高速岩層傳播的界面速度,了解地下高速岩層的地質構造和岩性。在有利條件下,還可用來確定高速岩層斷層的落差。但它不如反射法能同時了解地下多個岩層界面的詳細構造情況,而且勘探精度也低於反射法。
3. 石油的鑽井通常都有上千米深,大概的工作原理是怎樣的
通俗簡單的說吧:
能源是電力,
機械傳動,通過方鑽桿,轉動的力在地面傳給方鑽桿,方鑽桿下面是鑽桿,鑽桿下面是鑽頭,跟我們在地面上用電鑽鑽一個孔原理差不多
不同的是鑽桿之間用螺紋連接,鑽到一定深度,就得擰開中間再加一節鑽桿,這樣一節一節鑽下去,就可以達到幾千米深了。
每鑽一定深度,還得測量,有專門的測井公司,如發生偏差及時修正,
現在的鑽井水平,十分厲害,可以在直著鑽上千米深後再拐彎90度,鑽孔能拐彎這種情況,在其它行業,是完全不可能的,
4. 國外深層油氣勘探方法
賀曉飛周德勇蔣紅紅王艷紅程敏寧憲燕
摘要由於盆地深部的地質、構造條件極為復雜,深層勘探仍是一個世界性的難題。為了盡快突破勝利油區深層勘探局面,進行了國外深層油氣勘探方法調研,提供和引進了國外新的理論和技術。特別是根據勝利油區深層勘探實際,介紹了前蘇聯CDA技術、綜合勘探技術及重磁相結合勘探方法,對今後深層勘探具有較大的、較現實的參考意義。
關鍵詞深層勘探方法重磁勘探綜合勘探CDA技術勘探實例
一、引言
近十幾年來,深部油氣勘探越來越引起世界各國的重視,由於深層勘探是一個復雜、龐大的系統工程,涉及到地質研究、勘探技術、鑽井及鑽後的各項工程的方方面面的工作。對深層勘探技術,地震勘探仍是主要的勘探方法,但由於深層勘探的地質條件比中、淺層復雜得多,世界上深部勘探效果較好的國家都是充分利用各種勘探方法進行綜合勘探,因此如何利用重、磁、電及化探等各種有效手段與地震勘探相結合,是一個需要深入研究和試驗探索的問題。本文主要介紹世界上主要深層勘探國家目前使用的深層勘探技術方法及一些較成功的勘探實例,針對這方面進行國外深層勘探的情報調研,為勝利油區盡快突破深層勘探關,提供可借鑒和有價值的資料。
二、地震勘探技術
1.深部綜合地震勘探
影響一個地區地震資料品質的主要因素有:地下主要目的層波阻抗分析、地震下傳能量問題、靜校正問題、全程和層間多次波問題、反射信噪比及解析度問題等等。在此基礎上,通過提高野外採集精度、改進室內資料處理方法,可有效的改善深層地震資料的品質。
在深部地震資料採集、處理中,前蘇聯的「時間場共深度面元疊加技術(Common Depth Area Stack)」(簡稱CDA),對提高地震資料的解析度具有明顯的效果。這種技術可將野外24次覆蓋的記錄,在室內模擬處理高達360次覆蓋的剖面。其基本思路是將反映地下一定范圍的一個面元內共深度點的所有信息作「同相疊加」,提高信噪比,展寬頻帶,以提高解析度。圖1是西烏斯特—巴勒爾斯克油田的例子。該剖面縱向上也只有100ms。圖1a是24次水平疊加剖面,頻帶寬度為12~65Hz,泥岩蓋層在白色波谷中,其下的油層未反映出來。圖1b為同一剖面採用CDA技術模擬180次覆蓋的結果,泥岩蓋層下出現了油層的反射(油層厚度為5ms),下方的剖面的頻帶已經展寬到 15~125Hz,主頻為100Hz[1]。
圖1俄羅斯 CDA技術在油田的應用實例圖
以北美路易斯安那州Cibicides jeffersonensis(簡稱Cib jeff)砂層為例。勘探目的層是Cib jeff砂層,厚約15m,自然電位和視電阻率曲線表明該砂層是夾在厚層頁岩之間,深度為4069~4084m。該區用可控震源成功地進行了三維採集、處理和解釋。應用這些資料,對深部薄層地壓型砂層進行成像和成圖,並應用垂直和水平解析度較高的資料,對常規資料無法解釋的儲集層結構進行了解釋,最終取得了比較令人滿意的結果[2]。
2.折射波多次覆蓋地震勘探方法
折射波法是將折射波與反射波同時記錄,除了拾取折射波初至外,也利用續至波並追蹤回折波,並利用折射界面鑒別產生反射多次波的層位。這種方法常用於目的層埋藏深、結構復雜、地表條件不利、觀測面積較小的研究地區。
三維深層折射波資料的解釋除了有GRM方法和延遲時間法(或稱時間項)外,第三種方法包括射線追蹤和遞歸速度模型,該方法用於二維復雜數據體確實有效,可將其進一步應用到三維深層折射波數據體。三維射線追蹤是對觀測到的時間剖面進行折射體深度和速度成像的最佳方法;也可以將GRM法和延遲時間法結合起來對地層進行成像。最新推出的反射參數處理系統能同時利用反射和散射能量,因而有助於深層及基底反射的成像[3]。
3.三維勘探法——時間梯度法
在前蘇聯,用於沉積盆地深部構造的快速三維勘探法——時間梯度法得到了廣泛的發展。這種方法比較靈活,可以任意布置記錄儀和震源,使勘探工作既方便又經濟。
時間梯度法勘探是利用攜帶型的「龜型」地震儀完成的,能自動進行磁帶記錄。整個「龜型」地震儀的頻率特徵(在振幅頻率為0.9時)是2.5~14Hz,同時在12個點上進行地震記錄,並在平均6km的點距觀測條件下,兩次挪動儀器就可以覆蓋1000km2的研究區[4]。
圖2顯示的是在濱黑海地區依據地震標准層作出的構造圖。標准層對應於基底頂面(Vr=6.2~6.5km/s)。構造圖上劃分出了面積不大、但幅度較大、具有明顯近南北走向的凸起和凹陷,並劃分了一條近東西走向、切割基底和整個沉積蓋層的斷裂,這條斷裂將果爾黑茨基盆地的深層構造與大高加索南坡隆起狀塊體分開[4]。
圖2濱黑海時間梯度法試驗區基底頂面構造圖
三、電法勘探
1.差分標定法(差分歸一法、差分電場法)
有源可調頻率的瞬變電場差分標定法(縮寫為ДНМ),在前蘇聯地質結構比較復雜的伊爾庫茨克探區、目的層較深的濱裏海盆地以及其他地區取得了一些成功的實例。
該方法的函數特徵為隨地下介質電性特徵的不同,可以選用階值不同的三種P(t)參數,即:P1(t)為在作為勘探目標的油氣儲集層處於高電阻介質之內,當介質剖面的總電導率不超過100S(西門子)時,可以利用P1(t)函數異常來尋找與圈劃油氣藏;P2(t)為當含油氣層上覆層為數公里厚的低電阻率介質時,利用P2(t)函數來尋找與圈劃油氣藏將更為有利;P3(t)為當介質中既有高電阻率岩層屏蔽,又存在低電阻率岩層覆蓋的條件下,可以利用P3(t)函數來尋找與圈劃油氣藏[5]。
差分標定法具有以下幾點優越性:觀測參數誤差小,改善了數據的可靠性;具有較高的橫向解析度並能排除縱、橫向側面異常體的干擾;檢測極化異常體的靈敏度較高並具有較好的垂向分辨能力;具有更加靈敏可靠的直接找油氣功能[5]。
柴金斯油藏位於濱裏海盆地北部奧倫堡地區,產油層深逾4000m,上覆介質為低阻的厚層泥岩(ρ=2Ω·m,h=3000m)和厚層的岩鹽(ρ>1000Ω.m,h=2000m)。該區域試用差分標定法P3(t)參數圈劃油藏取得較成功實例。根據地震法資料,在4000~5000m深度范圍內發現了一系列的復雜構造,按照P3(t)曲線的外形,可分為三類:①負值梯度類,是深部無油氣層的特徵;②正值梯度類,是油氣藏上方的特徵;③畸變形類,是鹽下層內有垂向異常體所在地的特徵,如深度在4800~5200m鹽丘下斷裂所致,以及4460~4480m處鹽下層小幅度斷裂所致,這些已被地震勘探及鑽井所證實[5]。
2.大地電磁測深法
作為地震勘探的重要補充手段的大地電磁測深,尤其是面積型或寬線式多次覆蓋的大地電磁測深法,在解決深部和結晶基底方面,以及提高縱向和橫向解析度方面有很大的潛力。20世紀80年代,曾用此法劃分出了濱裏海盆地北部埋深5km、厚度僅數米的含油或含水的石炭系碳酸鹽岩油氣藏。
以南安大略沉積盆地的大地電磁測深勘探[6]為例。該盆地地層層序由夾少量蒸發鹽岩和砂岩的碳酸鹽岩和頁岩層序組成,泥盆系和志留系朝東北邊緣移動逐漸消失,基本由奧陶系組成單一的地層剖面。對該盆地的一套可控源大地電磁測深資料進行了解釋,並將結果和已知地質剖面作了對比,表明導出的電性模型與已知地質剖面對比得較好。確定該測深地點的位置,以便能夠利用傾斜沉積層的優越性。從盆地淺層到深部剖面依次解釋資料獲得最終的模型。按這種方式解釋大大減少了單個位置測深資料多層解釋中的固有的多義性。
3.瞬變電磁測深
瞬變電磁測深法(TEM)是在大地電磁測深基礎上發展起來的,在勘探精度、解析度和抗干擾、預測岩性探測深度等方面的功能顯著提高。其特點在於:垂向解析度顯著優於其他電法(只要深部地層電導值躍變大於10%時就能分辨)、靜態畸變小、受地表不均的影響小,因而無需進行靜態校正,適合在火山岩覆蓋區、碳酸鹽岩出露和黃土源等表面層靜校困難的地區使用;橫向影響小,有利於探測斷層的位置和探明與斷層有關的儲集層內的油水邊界;適合在高阻剖面所在的儲集層內探明油水邊界;適合在高阻剖面內探測低阻岩系或在良導體沉積覆蓋的盆地內探測深部高阻基底;因記錄儀器輕便,適合在地形復雜區內靈活布置施工。此法在俄羅斯若乾重要探區已被列入鑽井論證的必備資料。
4.電磁排列剖面法
電磁排列剖面法(EMAP)是根據地表一條線性測線測得的電磁響應結果而繪成的電阻-深度剖面。這種方法採用空間排列數據採集和處理技術,可有效地處理復雜的三維地下構造顯示。大多數EMAP信號採集和處理技術均與常規大地電磁法相同,但是,它的優越性主要在於密集數據采樣和對不利的三維構造效應的有效處理,可對電阻率剖面做出可靠的估計。
由於野外採集系統的改進,即模擬地震的時間域採集、處理和解釋方法,使精度大大提高。由於採集點密集,克服了表層靜位移,加之電磁法本身具有穿透高阻層的能力,能夠清楚地分辨出3~5km以下,厚度在100m以內的低阻電性層。由於解析度的提高,現在已用其進行尋找灰岩內幕構造、火成岩下油氣層追蹤等地震方法困難地區的勘探 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
四、重力和磁法勘探
深大斷裂通常呈現較強的磁異常帶和重力高值異常帶,因此,在斷裂發育的探區和深中部塊體結構的研究中,應充分利用航磁和重力資料。
在重力反演方面,利用重力的「特徵點」法、全歸一梯度法等來反演求解密度剖面。該方法已用在區分橫向密度不均勻性或揭示垂直的深大斷裂方面,其作法是利用重力觀測資料進行反演計算,求得密度剖面,然後疊合地震和電法資料,進一步劃分地層及區別可能的岩性,在此基礎上建立密度地質模型。以此作為初始模型,再用正演方法計算該模型的重力值,使正演重力值與觀測重力值擬合,使其誤差在要求范圍之內 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
在俄羅斯曾用此法在西西伯利亞西北部密度剖面上擬合出了一個埋深6km,厚度達2km的巨型礁體,引起了轟動 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
對西西伯利亞油氣藏附近重磁場特徵的研究表明,重磁場與油氣藏存在某種空間關系。首先藉助二維傅里葉頻譜(DFS)分析對振幅和頻率進行研究;然後進行變換、濾波和「移動窗口」分析,編制區域和局部異常圖及位場導數圖,研究已知油氣藏區域的參數分布[7]。
油氣藏大部分位於區域重磁正異常的斜坡上,該異常被解釋為與深部裂谷型構造相關。同時還證實了油氣藏的位置通常與局部重磁極小值是一致的,而這些極小值是由於基底為低密度和低磁化強度所引起。西西伯利亞北部的所有已知油氣藏均位於波長大約90~100km且梯度較大的重力異常區內。這種新揭示的油氣藏與位場參數之間的關系,在勘探程度低的陸地和海洋可用於預測新的油氣藏[7]。
五、滲透介質地震聲學法
滲透介質地震聲學是一種物探新方法,其主要特徵為:將烴儲集層模型視作一不均勻介質;孔隙空間中的流體是一活性動力學非均質導體,能夠積聚和轉換(模擬)波動過程;儲藏層框架則是一靜態非均質導體,控制著動力學非均質導體的運動[8]。
該方法可以通過內部參數關系或是流體相對其岩架的體積流量而正面求解;反向求解則是通過激發、記錄和分析解釋一組類似的流體波取得,其運動學和動力學參數是藉助流體流量來確定的。通過綜合分析聲波測井流體法、垂直地震測深法、地震勘探和實驗觀測結果,就能確保所獲解的可靠性[8]。
利用計算和程序的綜合分析可以求出有效孔隙度、孔隙直徑、滲透率、產量和沿著井的生產剖面深度上的飽和率特性。此法在阿斯特拉罕穹隆和東西伯利亞已取得成功實例[8]。
六、FMI測井技術
FMI是在地層傾角儀基礎上發展起來的最新一代電阻率成像測井儀,全稱為全井眼地層微電阻率成像儀。它利用高分辨微電阻率產生電圖像,研究岩石層理、構造、孔隙變化、裂縫以及沉積相等,並為准確判斷油氣層提供依據。在建立適合探區岩-像關系的基礎上,FMI技術的合理應用,是提高勘探效益,尤其是深層勘探效益的有效途徑[9]。
七、化探技術
利用淺部地球化學標志,可以預測盆地深層烴類聚集,前蘇聯在這方面已經取得較大進展和很好效果。
Pricaspian盆地位於俄羅斯地台東南部,儲集層位於二疊系鹽下層,埋藏較深(4000~5500m),油田靠近盆地的外邊緣。研究表明,在鹽上層中,烴類流體的地球化學特徵和組成類似於鹽下層中的烴類。通過對鹽層和鹽上陸相沉積層的地球化學特徵分析,可確定鹽下儲集層中油藏的位置[10]。
研究目標主要集中於鹽下流體的最突出特徵——H2S的高濃度。這一活動組分揭示了從鹽下儲集層到不同的上覆鹽層和鹽上地層的運移途徑。不用鑽穿盆地中央部位,沿盆地H2S痕跡的分布就能夠指示深部鹽下油氣藏的分布[10]。
利用地球化學數據可以確定該盆地的深部構造。具有異常地層壓力和異常流體組分的鹽下碳酸鹽岩油藏是上部鹽上層段地球化學標志的來源。在陸源岩中H2S不是原生的,因此陸源岩中H2S的痕跡是運移的可靠指示。這種方法也可用於預測其他盆地的鹽下層中未發現的油氣資源。通過對盆地上部鹽上層的地層水和次生礦物的詳細研究,可以區分地球化學參數的環境起源和運移起源[10]。
八、綜合勘探技術
對深部油氣勘探而言,更趨向於向多學科結合、綜合應用的方向發展。如將地震勘探與重、磁勘探結合,或地震勘探與大地電磁勘探結合,非地震三維地球物理勘探與三維地震勘探技術結合等綜合地球物理勘探方法,及近地表化探與地震資料的綜合應用,都會極大的推動深部油氣勘探。重、磁、電、化聯合解釋方法原理如圖3所示 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
目前,成果較為顯著的是地震與大地電磁資料的結合,它們已成為深部油氣勘探的有效方法 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
中新世中期,匈牙利潘農盆地構造活動強烈,並伴有火山岩噴發。岩漿覆蓋了基岩,逐漸形成相當厚的火山岩地層。火山岩大都能屏蔽和散射地震信號,常常導致地震資料品質較差。在這種情況下,MT測量能比地震測量更好地獲得火山岩以下的信息。通過比較MT(博斯蒂克)和測井電阻率圖,在2km上下的中新統火山岩處MT與測井電阻率均對應高阻,而火山岩以上地層均為低阻。這一現象表明,兩種不同方法的測量結果相近。將MT測量結果按博斯蒂克電阻率分布的垂直擬斷面形式顯示(圖4),可以清楚地圈定出高阻火成岩以下的低阻地層。在MT測站6上(圖4),深度為4~5km處低阻帶的電阻率值,與離該測站約3~4km處的KH井同一深度的測井電阻率值相近,MT的低阻層為白堊紀地層 胡秋平等著.與我國渤海灣盆地深層類似的國外盆地石油地質特徵研究.中國石油天然氣集團公司信息研究所.1998.
圖3重、磁、電、化聯合解釋方法流程圖
圖4博斯蒂克電阻率分布橫斷面圖
由此例可以看出,根據大地電磁測深(MT)橫斷面所示的地下構造形態及由此獲得的地下電阻率(或電導率)的分布特性,結合地震資料,可確定地下岩性並判斷其含油氣性。此類研究為深部油氣的勘探開辟了廣闊的道路。
九、結束語
深層地質條件的復雜性,決定了勘探應避免使用單一方法和技術。充分利用各種勘探技術進行綜合勘探,無疑是准確地獲取深層地質信息的重要手段。
前蘇聯在濱裏海盆地的勘探過程中,在遙感、重力、磁力、電法勘探的基礎上,有計劃地進行了大量的共深點法、折射波剖面對比法,並與深部參數井和普查鑽探工作相結合,進行綜合勘探較全面地了解深層地質結構,為目標評價和勘探決策提供了重要依據,取得了較好的效果。
勝利油區深層勘探程度較低,今後除了加強地震工作,改善和提高地震反射效果外,應該考慮對深層目標有選擇地應用重力、磁力及電法等其他手段與地震相結合進行綜合勘探,有望在深層獲得新發現。
致謝本文在完成過程中,得到地質科學研究院宋國奇總地質師、蔡進功副總地質師的指導與幫助,在研究過程中遇到的許多難點問題得到地質科學研究院的楊品榮、趙洪波、陳傑及地球物理勘探公司的郭良川高級工程師的熱情指導,在此表示深深的謝意。
主要參考文獻
[1]李慶忠著.走向精確勘探的道路.北京:石油工業出版社1994.
[2]Kinsland.G L High-resolution three-dimensional seismic survey of a thin sand at depth.Geophysics,1999,56(12).
[3]Geoff Bennett.3D seismic refraction for deep exploration targets.The Leading Edge,1999,18(2).
[4]林中洋譯.沉積盆地深部構造的快速三維地震勘探法.石油地質信息,1994,15(2).
[5]任俞編譯.電法勘探圈劃油氣藏的新技術——差分標定法簡介.國外油氣勘探,1991,3(2).
[6]Gomez-Trevino E.Electromagnetic soundings in the sedimentary basin of southern Ontario—A case history.Geophysics, 1983, 48(3):311~330.
[7]Alexey L,Piskarev.Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia.Geophysics, 1997,62(3):831~841.
[8]任俞譯.超深油氣藏物探方法的發展和改進.世界石油工業,1996,3(7).
[9]布志虹等.從濮深8井看FMI技術在東濮深層的應用前景.斷塊油氣田,1999,16(5).
[10]劉斌等譯.利用淺部地球化學標志預測Pricaspian盆地二疊系鹽下烴類聚集.國外油氣勘探,2000,12(3).