Ⅰ 油氣儲量是怎樣計算的
油田好比是地下「油庫」,氣田好比是地下「氣庫」,油氣田就好比是地下「油氣庫」了。油庫的大小以裝油多少來衡量,氣庫的大小以裝氣多少來衡量,油田的大小,是以含油的多少即儲量來衡量的。世界上的油田形形色色、多種多樣,只有「相似」而沒有「相同」的,儲量也相差懸殊。例如,世界排名第一的頭號油田——沙烏地阿拉伯的加瓦爾油田,其可采儲量高達114×108噸;世界排名第二的科威特的布爾干油田,可采儲量也有105×108噸。不過,這種可采儲量超過百億噸的超級大油田,到目前為止,全世界只發現兩個。原始地質儲量超過20×108噸(相當可采儲量6.8×108噸)的大型油田,世界上現有42個,我國大慶油田名列其中。而可采儲量在0.06~1.3百萬噸級的中小型油田,在世界油田中占絕大多數。
油氣儲量是油氣田勘探最重要的成果,是油氣田開發的物質基礎,也是國家制定能源政策和國家投資的重要依據。地下沒有「油海」、「油河」,油氣是儲存於岩石的孔隙、洞隙和縫隙之中的。由於儲存條件復雜,使儲存於地下的油氣不能如願以償全部採到地面。因此,把油氣儲量分為兩類:一類叫做地質儲量,即地下油氣田儲集層中油氣的實際儲量;另一類叫可采儲量,即在現有的經濟、技術條件下,可以採到地面的油氣儲量。通常把可采儲量與地質儲量的比值稱為採收率。當然,採收率越高越好。
在油氣田勘探的各個階段,都要進行儲量計算。計算的方法有好幾種,通常採用的是容積法。大家知道,油氣儲存在地下岩石的孔、洞、縫隙之中,所以容積法計算油氣儲量的實質是計算岩石孔隙中油氣所佔的體積,並把地下油氣的體積換算成地面的重量(石油)或體積(天然氣),這就是油氣的儲量。石油地質儲量的計算公式為:
公式中,天然氣體積系數是一個與天然氣組成成分、地下及地面的溫度和壓力有關的系數。
儲量計算完以後,還要對探明儲量進行綜合評價。評價的目的是檢查儲量計算的可靠性。如果把儲量計算比喻為一份考卷,那麼對儲量的綜合評價就相當於答卷者在交卷之前的自我檢查,仔細查看卷面上有無錯、漏、公式使用不當、計算失誤等等。經檢查後,如證明使用的參數齊全、准確、計算無誤,所定儲量的級別和勘探階段及研究程度相符,就可以上交了。
Ⅱ 液化石油氣卧式儲罐怎麼計算罐里有多少液化石油氣
靠液位計,根據液位高度,和儲罐竣工時給的對照表,可以快速估算儲量,但一般對照表精度到分米,如果需要厘米級,就得根據儲罐的幾何參數去計算了,稍微難一點,涉及扇形柱體體積和球星體積計算,得用3次方和開3次方!
Ⅲ 一公斤液化石油氣等於多少立方米 一立方天然氣等於多少斤LNG 求高手
14.5公斤的液化石油氣氣化後約為6立方米液化石油氣。 液化石油氣大約2公斤液態相當於1立方米氣態,氣化後大約等於7.25立方米液化石油氣。
質量=密度x體積 (1公斤=1kg)
1立方天然氣重量=天然氣的密度x天然氣的體積=0.7174Kg/m^3 x 1m^3=0.7174公斤。
①液化石油氣密度:液態液化石油氣580kg/立方米,氣態密度為:2.35kg/立方米。
(3)液化石油氣儲量怎麼計算擴展閱讀
液化石油氣是在煉油廠內,由天然氣或者石油進行加壓降溫液化所得到的一種無色揮發性液體。它極易自燃,當其在空氣中的含量達到了一定的濃度范圍後,它遇到明火就能爆炸。
天然氣是指自然界中天然存在的一切氣體,包括大氣圈、水圈、和岩石圈中各種自然過程形成的氣體(包括油田氣、氣田氣、泥火山氣、煤層氣和生物生成氣等)。
Ⅳ 一罐液化氣多少立方
液化氣罐的規格不同,其體積也不同。液化石油氣580kg/立方米,氣態密度為2.35kg每立方米。常見的液化氣罐分為50kg、15kg、5kg、2kg,其體積分別為0.098立方、0.029立方、0.0096立方、0.0038立方。一罐液化氣多少立方
液化氣罐是用來儲存液化氣的儲罐,內部有液化氣時壓力較大,操作不當可能會引起爆炸,屬於特種設備。
液化氣罐是鋼材製成的,擁有一定的抗壓能力,能承受的最大壓力為2.1兆帕。
Ⅳ 液化石油氣怎樣計算瓶里有多少立方氣
液化石油氣,在氣瓶里的狀態有液態和氣態,如果完全充滿氣體應該是瓶容積的20%
Ⅵ 求 石油天然氣儲量計算方法
容積法計算石油地質儲量公式:N=100·A·h·(1—Swi)ρo/Boi式中:N—石油地質儲量,10的4次方t;
A—含油麵積,平方千米
h—平均有效厚度,m;
φ—平均有效孔隙度,f;
Swi—平均油層原始含水飽和度,f;
ρo—平均地面原油密度,g/cm3
;
Boi—
平均原始原油體積系數
Rm3/Sm3。
Ⅶ 液化石油氣1噸等於多少立方 說的都是液態的液化石油氣啊!
看到你改標題了,加了後面一句,強調液態了.改過標題後,答案當然不同了.針對你改標題後的問題:
液態時液化氣密度(標准狀態下 1atm 25℃):
丙烷 正丁烷 丙烯 異丁烷
528 601 545 582
通常情況下,液態的液化氣密度取 580公斤/立方米,則一噸液化氣是1.724立方米.因C3和C4比例不同,密度也在變化.
以下是沒改標題前的答案:
我們所用的工業、民用液化氣主要是由丙烷、丁烷組成的混合物(當然還有其它烴類),一噸氣氣化後得到多少立方是與液化氣中的丙烷、丁烷比例有直接關系.
我們以60%丙烷和40%丁烷的混合氣為例,氣態情況下密度約為2.29kg/Nm3.則氣態情況下每公斤氣的體積約為0.437立方米,氣態情況下每噸氣約為437立方米.
每批次的組分都不一樣,氣態情況下每噸相當於多少立方米的數值都在波動.
注意!這是指氣態情況下的數據.
精確的計算方法是用標准狀態下液化氣中各組份的摩爾質量和摩爾體積計算的,丙烷的摩爾質量為44g/mol,摩爾體積為22.4L/mol.一公斤丙烷是22.73摩爾,22.73mol × 22.4L/mol = 509L,即丙烷在標准狀態下每公斤為509升.
Ⅷ 液化氣25t罐的存量如何計算
按容量計算,液化氣充裝系數0.42噸/立方,再乘以安全系數0.95,如一個50立方的液化氣罐,其容量是50*0.42*0.95=19950KG
Ⅸ 容積法計算石油儲量
1. 容積法基本公式
容積法計算石油儲量的實質就是確定石油在油層中所佔據的那部分體積。石油儲集在油層的孔隙空間內,孔隙內除石油以外,還含有一定數量的水,因此,只要獲得油層的幾何體積 (即油層的含油麵積和有效厚度之乘積)、有效孔隙度、含油飽和度等地質參數,便可計算出地下石油的地質儲量。
油層埋藏在地下深處,處於高溫、高壓條件下的石油往往溶解了大量的天然氣,當原油被採到地面上以後,由於壓力降低,石油中溶解的天然氣便會逸出,從而使石油的體積大大減小。
如果要將地下原油體積換算成地面原油體積,必須用地下原油體積除以石油體積系數(地下原油體積與地面標准條件下原油體積之比)。石油儲量一般以質量來表示,故應將地面原油體積乘以石油的密度,由此便得到容積法計算石油儲量的基本公式:
N=100A·h·φ(1-Swi))ρo/Boi
式中:N——石油地質儲量,104t;A——含油麵積,km2;h——平均有效厚度,m;φ——平均有效孔隙度,小數;Swi——平均油層原始含水飽和度,小數;ρo——平均地面原油密度,t/m3;Boi——平均原始原油體積系數。
地層原油中的原始溶解氣地質儲量按下式計算:
GS=10-4N·Rsi
式中:Gs——溶解氣的地質儲量,108 m3;Rsi——原始溶解氣油比,m3/t。
容積法是計算油田地質儲量的主要方法。該方法適用於不同勘探開發階段,不同圈閉類型、儲層類型及驅動方式的油藏。計算結果的可靠程度取決於資料的數量和准確性。對於大、中型構造油藏的精度較高,而對於復雜類型油藏則精度較低。
2. 儲量參數的確定
(1) 含油麵積
含油麵積是指具有工業性油流地區的面積,是油藏產油段在平面上的投影范圍。容積法計算石油儲量公式中,含油麵積的精度對石油儲量的可靠性有決定性的影響。所以,准確地圈定含油麵積是儲量計算的關鍵。
含油麵積的大小,取決於產油層的圈閉類型、儲層物性變化及油水分布規律。對干均質油層、岩性物性穩定、構造簡單的油藏來說,可根據油水邊界確定含油麵積。對於地質條件復雜的油藏,含油邊界往往由多種邊界構成,如油水邊界、油氣邊界、岩性邊界及斷層邊界等。對於這一類油藏在查明圈閉形態、斷層位置、岩性邊界以及確定油藏油水分布規律之後,才能正確圈定含油麵積。
岩性邊界是指有效儲層與非有效儲層的分界線,也稱有效厚度零線。在確定岩性邊界時,要先確定儲層的砂岩尖滅線,然後根據規則確定岩性邊界線。
從概率學角度講,在一口無有效厚度 (物性差或岩性尖滅) 的井與相鄰有有效厚度的井之間,有效厚度零線的位置可能出現在兩井之間的任意點上,而且出現的機會均等。相對而言,零線放在兩井間的中點位置,是概率誤差最小的簡化辦法。同理,在一口有效厚度的井與相鄰相變為泥岩的井之間,岩性尖滅線的位置也應在井距1/2處。考慮到砂岩物性標准比儲層有效厚度物性標准低,砂體末端雖不以楔形遞減規律尖滅,但仍存在變差的趨勢,所以可將零線定在尖滅線至有有效厚度的井之間1/3距離處。用這種方法因定的岩性邊界,計算平均有效厚度時,宜採用井點面積權衡法或算術平均法,而不宜用等厚線面積權衡法。
斷層邊界是斷層控油范圍,是斷層面與油層頂、底面的交線。當油層位於斷層下盤時,斷層邊界為油層底面與斷層面的交線;當油層位於斷層上盤時,斷層邊界為油層頂面與斷層面的交線。
油水邊界為油層頂 (底) 面與油水接觸面的交線。油水接觸面指油藏在垂直方向油與水的分界面。對於邊水油藏,油水接觸面與油層頂面的交線為外含油邊界,它是含油麵積的外界;油水接觸面與油層底面的交線為內含油邊界,它控制了含油部分的純含油區;內、外含油邊界之間的含油部分也稱為過渡帶,油水過渡帶的寬窄主要取決於地層傾角,地層傾角大的油藏,過渡帶窄,地層傾角小的油藏,過渡帶寬。對於底水油藏,由於底水存在,只有外含油邊界。如果油層的厚度變化很小,則內外油水邊界和構造線平行。如果油層厚度在平面上有明顯變化,這時內外含油邊界不平行,在相變情況下,它們在油層尖滅位置上相合並 (圖7-1)。
圖7-1 油水邊界特徵圖
油水接觸面確定方法有以下3種:
1) 利用岩心、測井以及試油等資料來確定油水接觸面。在實際工作中,對一個油藏來說,首先要以試油資料為依據,結合岩心資料的分析研究,制定判斷油水層的測井標准,然後劃分各井的油層、水層及油水同層。在此基礎上按油、水系統,根據海拔高度作油底、水頂分布圖。如圖7-2所示,按剖面將井依次排列起來,在圖上點出各井油底、水頂位置,並分析不同資料的可靠程度。在研究油藏油水分布規律的基礎上,在油底與水頂之間劃分油水接觸面。
圖7-2 確定油水界面圖 (據韓定榮,1983)
2) 應用毛管壓力曲線確定油水接觸面。應用油層岩心的毛管壓力曲線,再結合油水相對滲透率曲線,人們能夠較准確地劃分出油水接觸面。如圖7-3所示,實驗室測定的毛管壓力曲線 (汞-空氣系統) 可換算為油藏條件下的毛管壓力曲線 (油-水系統),而且縱坐標上的毛管壓力可轉換成自由水面以上的高度表示。如果一個油田,通過岩心分析、測井解釋或其他間接方法取得含油飽和度數值時,就可直接做出含油飽和度隨深度的變化圖,即油藏毛管壓力曲線。若已知油層某部位的含油飽和度,就可在曲線上查得某部位距油水接觸面的相對高度,進而可求出油水接觸面深度。
圖7-3 利用毛細管壓力曲線與相對滲透率曲線劃分油水接觸面示意圖
3) 利用壓力資料確定油水接觸面。在一個圈閉上,只要有一口井獲得工業性油流,而另一口井打在油層的邊水部分,且這兩口井通過測試獲得了可靠的壓力和流體密度的資料,就可以利用這兩口井的壓力資料、油和水密度資料計算油水接觸面。圖7-4示,1號井鑽在油藏的頂部,測得的油層地層壓力為po,2號井鑽在油藏的邊水部分,測得的水層地層壓力為pw。在油藏內,2號井的地層壓力pw為:
油氣田開發地質學
式中:Ho——1號井油層中深海拔高度,m;Hw——2號井水層中深海拔高度,m;How——油水接觸面海拔高度,m;ΔH——1號井與2號井油、水層中深的海拔高度差,m;ρo——油的密度,g/cm3;ρw——水的密度,g/cm3。
圖7-4 利用測壓資料確定油水接觸面示意圖
當構造圈閉上只有一口油井,而邊部無水井時,可以利用區域的壓力資料和水的密度資料代替鑽遇水層的井的測壓資料來計算油水接觸面深度。
確定了岩性邊界、斷層邊界、油水邊界 (油氣邊界),也就圈定的含油范圍,這樣可以計算含油麵積。
(2) 油層有效厚度
油層有效厚度是指油層中具有產油能力部分的厚度,即工業油井內具有可動油的儲層厚度。劃分有效厚度的井不能理解為任意打開一個單層產量都能達到工業油流標准,而是要求該層產量在全井達到工業油井標准中有可動油流出即可。因此,作為油層有效厚度必須具備兩個條件:一是油層內具有可動油;二是在現有工藝技術條件下可供開采。所以,在工業油流井中無貢獻的儲層厚度不是有效厚度,不是工業油流井不能圈在含油麵積內,不劃分有效厚度。
研究有效厚度的基礎資料有岩心錄井、地層測試和試油資料、地球物理測井資料。我國總結了一套地質和地球物理的綜合研究方法:以單層試油資料為依據,對岩心資料進行充分試驗和研究,制定出有效厚度的岩性、物性、含油性下限標准,並以測井解釋為手段,應用測井定性、定量解釋方法,制定出油氣層劃分標准,包括油、水層標准,油、干層標准及夾層扣除標准,用測井曲線及其解釋參數確定油、氣層有效厚度。
1) 有效厚度物性標准
當油層的有效孔隙度、滲透率及含油飽和度達到一定界限時,油層便具有工業產油能力,這樣的界限被稱之為有效厚度的物性標准。由於一般岩心資料難以求准油層原始含油飽和度,通常用孔隙度和滲透率參數反映物性下限。
確定有效厚度物性下限的方法有測試法、經驗統計法、含油產狀法及鑽井液浸入法等。
◎測試法:測試法是根據試油成果來確定有效厚度物性下限的方法。對於原油性質變化不大,單層試油資料較多的大油田,可直接做每米採油指數和空氣滲透率的關系曲線。每米採油指數大於零時,所對應的空氣滲透率值,即為油層有效厚度的滲透率下限 (圖7-5)。
圖7-5 單位厚度採油指數與滲透率關系曲線
利用單層試油資料與岩心測定的孔隙度、滲透率資料交繪圖來確定有效厚度的物性下限。如圖7-6所示,圖中指出產油層滲透率下限為18×10-3μm2,孔隙度下限為17%。
圖7-6 試油與物性關系圖
◎經驗統計法:根據美國通常使用經驗統計法,對於中低滲透性油田,將全油田的平均滲透率乘以5%,就可作為該油田的滲透率下限;對於高滲透性油田,或者遠離油水接觸面的含油層段滲透率平均值乘以比5%更小的數字作為滲透率下限。他們認為,滲透率下限值以下的砂層的產油能力很小,可以忽略。
◎含油產狀法:在取心井中,選擇一定數量的岩心收獲率高,岩性、含油性較均勻,孔隙度、滲透率具有代表性的油層進行單層試油,確定產工業油流的油層的含油產狀下限,進而確定儲層物性下限。如圖7-7所示,本例試油證實油浸和油斑級的油層不產工業油流,因此飽含油和富含油級的油層是有效油層,它們的物性下限為有效厚度的物性下限。
圖7-7 油層物性界限岩樣分布圖
◎鑽井液侵入法:在儲層滲透率與原始含油飽和度有一致關系的油田,利用水基鑽井液取心測定的含水飽和度可以確定有效厚度物性下限。水基鑽井液取心中,鑽井液對儲層產生不同程度的侵入現象。滲透率較高的儲層,鑽井液驅替出原油,使取出岩樣測定的含水飽和度增高;滲透率較低的儲層,鑽井液驅替出原油較少;當滲透率降低到一定程度的儲層,鑽井液不能侵入,取出岩樣測定的含水飽和度仍然是原始含水飽和度。因此,含水飽和度與空氣滲透率關系曲線上出現兩條直線,其交點的滲透率就是鑽井液侵入與不侵入的界限 (圖7-8)。鑽井液侵入的儲層,反映原油可以從其中流出,因此為有效厚度。鑽井液未侵入的儲層,反映原油不能從其中流出,因此為非有效厚度。交點處的滲透率就是有效厚度下限。用相同方法也可以定出孔隙度下限。
圖7-8 鑽井液侵入法確定滲透率下限圖
2) 有效厚度的測井標准
有效厚度物性標准只能劃分取心井段的有效厚度。對於一個油田,取心井是有限的,大量探井和開發井只有測井資料,要劃分非取心井的有效厚度,必須研究反映儲層岩性、物性及含油性的有效厚度測井標准。
油層的地球物理性質是油層的岩性、物性與含油性的綜合反映。因此,它也能間接地反映油層的 「儲油能力」 和 「產油能力」。顯然,當油層的地球物理參數達到一定界限時,油層便具有工業產油能力,這界限就是有效厚度的測井標准。
在測井曲線上劃分有效厚度的步驟是:首先根據油水層標准判斷哪些是油 (氣) 層,哪些是水層;然後在油水界面以上,根據油層、干層標准區分哪些是工業油流中有貢獻的有效層,哪些是無貢獻的非有效層 (即干層);最後在有效層內扣除物性標准以下的夾層。所以有效厚度測井標准包括油、水層解釋標准,油、干層標准及夾層標准。對油、氣、水分布復雜,剖面上油氣水交替出現的斷塊油藏、岩性油藏,確定有效厚度的關鍵是制定可靠的油水層解釋標准 (圖7-9);對於具有統一油水系統、砂泥岩交互出現的油藏,關鍵是制定高精度的油、干層標准 (圖7-9)。
圖7-9 某油田油、水、干層測井解釋標准
3) 油層有效厚度的劃分
油層有效厚度劃分時,先根據物性與測井標准確定出有效層,然後劃分出產油層的頂、底界限,量取總厚度,並從總厚度中扣除夾層的厚度,從而得到油層有效厚度。
利用測井資料劃分油層頂、底界限,量取油層總厚度時,應當綜合考慮能清晰地反映油層界面的多種測井曲線,如果各種曲線解釋結果不一致時,則以反映油層特徵最佳的測井曲線為准。例如,我國東北部某大油田,採用微電極、自然電位、視電阻率3條曲線來量取產層總厚度 (圖7-10)。
對於具有高、低阻夾層和薄互層的油層來講,除量取油層總厚度外,還必須扣除夾層的厚度。由於低阻夾層多為泥質層,故量取低阻夾層厚度應以自然電位曲線作為判別標志,以微電極和視電阻率曲線作驗證,最後,以微電極曲線所量取的厚度為准。量取高阻夾層的厚度應以微電極曲線顯示的尖刀狀高峰異常為判別標志 (圖7-11)。用油層總厚度減去夾層厚度便得油層有效厚度。
(3) 油層有效孔隙度
油層有效孔隙度的確定以實驗室直接測定的岩心分析數據為基礎。對於未取岩心的井採用測井資料求取有效孔隙度,並與岩心分析數據對比,以提高其精度。計算的地質儲量是指油藏內的原始儲油量,應使用地層條件下孔隙度參數。採用地面岩心分析資料時,應將地面孔隙度校正為地層條件下孔隙度。有效孔隙度的獲得有兩種途徑:一是岩心分析有效孔隙度;二是測井解釋有效孔隙度。
圖7-10 油層有效厚度量取方法示意圖
圖7-11 扣除夾層示意圖
通過鑽井取心,將砂岩儲層取到地面後,由於壓力釋放、彈性膨脹,孔隙度有所恢復,所以一般在地面常壓下測量的岩心孔隙度大於地層條件下的孔隙度。計算儲量時應將地面孔隙度校正為地層條件的孔隙度。
實驗室提供了不同有效上覆壓力下的三軸孔隙度,利用這些數據就能夠對地面孔隙度進行壓縮校正。根據美國岩心公司研究,三軸孔隙度轉換為地層孔隙度的公式為:
φf=φg-(φg-φ3)ε
式中:φf——校正後的地層孔隙度,小數;φg——地面岩心分析孔隙度,小數;φ3——靜水壓力作用下的三軸孔隙度,小數;ε——轉換因子。
D. Teeuw通過對人造岩心模型的理論計算和實際岩心測試,得出轉換因子為:
油氣田開發地質學
式中:λ——岩石泊松比,即岩石橫向應變和軸向應變的絕對值的比值,是無因次量。
確定岩樣所在油藏有效上覆壓力下的三軸孔隙度和地面孔隙度後,即可算出每塊岩樣的地層孔隙度。為尋求本地區地面孔隙度壓縮校正規律,可制定本地區關系圖版或建立相關經驗公式。油區可利用這種圖版或相關經驗公式,將大量常規岩心分析的地面孔隙度校正為地層孔隙度。
(4) 油層原始含油飽和度
原始含油飽和度是指油層在未開采時的含油飽和度Soi,一般先確定油層束縛水飽和度Swi,然後通過1-Swi求得原始含油飽和度。
確定含油飽和度的方法有岩心直接測定、測井資料解釋、毛細管壓力計算等方法。
1) 岩心直接測定
使用油基鑽井液取心,測定束縛水飽和度,然後計算出原始含油飽和度。
油基鑽井液取心井成本高,鑽井工藝復雜,工人勞動條件差。我國一般用密閉取心代替油基鑽井液取心。密閉取心採用的是水基鑽井液,利用雙筒取心加密閉液的辦法,以避免岩心在取心過程中受到水基鑽井液的沖刷。
近幾年來,美國高壓密閉冷凍取心工藝獲得成功。這種取心方法是在取心筒內割心至岩心起出井口前,岩心筒始終保持高壓密封的條件。岩心到井口後立即放在乾冰中冷凍,使油、氣、水量保持原始狀態。此方法價格高昂,取心收獲率僅在60%左右。
前蘇聯採用井底蠟封岩心的取心方法取得較好的效果。具體做法是在地面用石蠟充滿取心筒,在取心過程中,岩心進入熔化的石蠟中,阻止鑽井液與岩心接觸。多數情況下,地面可取得蠟封好的岩心。
2) 測井解釋原始含油飽和度
由於油基鑽井液取心和密閉取心求原始含油飽和度成本高,一般一個油區只有代表性幾口井,即使有的油田有1~2口油基鑽井液取心井,它的飽和度數據也不能代表整個油田,因此經常用測井資料解釋原始含油飽和度。往往測井解釋原始含油飽和度偏低,有時偏低達5%~10%。為了彌補測井解釋這一弱點,在有油基鑽井液取心井或密閉取心井的地區,都要尋求測井參數和岩心直接測定的原始含油飽和度的關系,以提高測井解釋精度。
3) 利用實驗室毛細管壓力資料計算原始含油飽和度
實驗室的毛細管壓力曲線是用井壁取心、鑽井取心的岩樣測定的,而每一塊岩樣只能代表油藏某一點的特徵,只有將油藏上許多毛細管壓力曲線平均為一條毛細管壓力曲線才能代表油藏的特徵,才有利於確定油藏的原始含油飽和度。J函數處理是獲得平均毛細管壓力資料的經典方法。用平均毛細管壓力曲線確定油藏原始含油飽和度步驟如下:
(1)將室內平均毛細管壓力曲線換算為油藏毛細管壓力曲線
實驗室毛細管壓力表達式:
油氣田開發地質學
油藏毛細管壓力表達式:
油氣田開發地質學
式中:σL,θL及 (pc)L——分別為實驗室內的界面張力、潤濕角及毛細管壓力;σR,θR及 (pc)R——分別為油藏條件下的界面張力、潤濕角及毛細管壓力。
上兩式相除,得:
油氣田開發地質學
(2)將油藏條件下的毛細管壓力換算為油柱高度
油氣田開發地質學
式中:H——油藏自由水面以上高度,m;(pc)R——油藏毛細管壓力,MPa;ρw和ρo——分別為油藏條件下油與水的密度,g/cm3。
圖7-12A為室內毛細管壓力曲線轉換為自由水面以上高度表示的含水飽和度關系圖。
(3)確定油層原始含油飽和度
圖7-12A可轉換為油水飽和度沿油藏埋藏深度分布圖 (圖7-12B)。根據該圖可查出油層任意深度所對應的原始含水飽和度,則可求出原始含油飽和度。
圖7-12 毛管壓力曲線縱坐標的變換 (據范尚炯,1990)
(5) 地層原油體積系數
地層原油體積系數是將地下原油體積換算到地面標准條件下的脫氣原油體積的重要參數。凡產油的預探井和部分評價井,應在試油階段經井下取樣或地面配樣獲得准確的地層流體高壓物性分析數據。
(6) 地面原油密度
地面原油密度應根據一定數量有代表性的地面樣品分析結果確定。
Ⅹ 石油儲量 計算公式
根據容積法計算:儲量=油層厚度*含油麵積*孔隙度*含油飽和度*原油密度/原油體積系數
當然這只是一種粗略的估算方法,得到的是靜態儲量,動態儲量可以更加試井結果計算,那個計算公式就很多種了,也比較復雜、、、